
A.P. Physics 1 First Semester Review Sheet 
Fall, Dr. Wicks 

 
 

Chapter 1:  Introduction to Physics 
• Review types of zeros and the rules for significant digits 
• Review mass vs. weight, precision vs. accuracy, and dimensional analysis problem solving. 
 
Chapter 2:  One-Dimensional Kinematics 
A.  Velocity 

• Equations for average velocity:     f i
ave

f i

x xxv
t t t

-D
= =
D -

     and     
1 ( )
2ave f iv v v= +  

• In a position-versus-time graph for constant velocity, the slope of the line gives the average velocity.  
See Table 1. 

• Instantaneous velocity can be determined from the slope of a line tangent to the curve at a particular 
point on a position-versus-time graph. 

• Use 
 
vave =

ΔxTotal

ΔtTotal

 to calculate the average velocity for an entire journey if given information about the 

various legs of the journey. 
 
B.  Acceleration 

• Equation for average acceleration:     f i
ave

f i

v vva
t t t

-D
= =
D -

 

• In a velocity-versus-time graph for constant acceleration, the slope of the line gives acceleration and 
the area under the line gives displacement.  See Table 1. 

• Acceleration due to gravity = g  = 9.81 m/s2.  (Recall a  = - g  = -9.81 m/s2) 
 

Table 1:  Graphing Changes in Position, Velocity, and Acceleration 
 Constant 

Position 
Constant 
Velocity 

Constant 
Acceleration 

Ball Thrown 
Upward 

Position 
Versus 
Time: 

    
Velocity 
Versus 
Time: 

    
Accelera
-tion 
Versus 
Time: 

    
  

t 

x 

t 

x 

Slope = vave 

t 

x 

t 

x 

t 

v 

t 

v 

t 

v 

Slope = aave 

t 

v 

Slope = -9.81 m/s2 

t 

a 

t 

a 

t 

a 

t 

a 

a = -9.81m/s2 
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Table 2: Comparing the Kinematic Equations 

Kinematic Equations Missing Variable 
 

o avex x v t= +  
 

 
 
a  

 

ov v at= +  
 

 
xD  

 
21

2o ox x v t at= + +  

 

 
 

finalv  

 
2 2 2ov v a x= + D  

 

 
tD  

 
 
Chapter 3:  Vectors in Physics 
A.  Vectors 
• Vectors have both magnitude and direction whereas scalars have magnitude but no direction. 
• Examples of vectors are position, displacement, velocity, linear acceleration, tangential acceleration, 

centripetal acceleration, applied force, weight, normal force, frictional force, tension, spring force, 
momentum, gravitational force, and electrostatic force. 

• Vectors can be moved parallel to themselves in a diagram. 
• Vectors can be added in any order.  See Table 3 for vector addition. 

• For vector   r


 at angle q  to the x-axis, the x- and y-components for   r


 can be calculated from     
  Δx = r cosθ      and       Δy = r sinθ . 

• The magnitude of vector   r


 is       r = Δx2 + Δy2      and the direction angle for   r


 relative to the 

nearest x-axis is     
  
θ = tan−1 Δy

Δx
⎛
⎝⎜

⎞
⎠⎟

. 

• To subtract a vector, add its opposite. 
• Multiplying or dividing vectors by scalars results in vectors. 
• In addition to adding vectors mathematically as shown in the table, vectors can be added graphically.  

Vectors can be drawn to scale and moved parallel to their original positions in a diagram so that they 
are all positioned head-to-tail.  The length and direction angle for the resultant can be measured with a 
ruler and protractor, respectively. 

 
B.  Relative Motion 
• Relative motion problems are solved by a special type of vector addition. 
• For example, the velocity of object 1 relative to object 3 is given by        v


13 = v


12 + v


23      where object 
2 can be anything. 

• Subscripts on a velocity can be reversed by changing the vector’s direction:        v


12 = −v


21  
  



A.P. Physics 1 First Semester Review Sheet, Page 3 

 
 

Table 3:  Vector Addition 
Vector Orientation Calculational Strategy Used 

Vectors are parallel: Add or subtract the magnitudes (values) to get the resultant. 
Determine the direction by inspection. 
 

Vectors are perpendicular: 
 

 

Use the Pythagorean Theorem, 2 2 2x y rD +D = , to get the 
resultant, r , where xD  is parallel to the x-axis and yD  is 
parallel to the y-axis. 
 

Use 1tan y
x

q - Dæ ö= ç ÷Dè ø
 to get the angle, q , made with the x-axis. 

 
Vectors are neither parallel 
nor perpendicular: 

Adding 2 Vectors Adding 2 or More Vectors 
(Vector Resolution Method) 

 Limited usefulness Used by most physicists 

 

 
(1)  Use the law of cosines to 

 determine the resultant: 
2 2 2 2 cosc a b ab q= + -  

 
(2)  Use the law of sines to 

help determine direction: 

sin sin sin
a b c
A B C
= =  

 
(1)  Make a diagram. 
(2)  Construct a vector table. 

(Use vector, x-direction, 
and y-direction for the 
column headings.) 

(3)  Resolve vectors using 
  Δx = r cosθ  and 

  Δy = r sinθ  when 
needed. 

(4)  Determine the signs. 
(5)  Determine the sum of the 

vectors for each direction, 

totalxD  and totalyD . 
(6)  Use the Pythagorean Thm 

to get the resultant, r : 
2 2 2

total totalx y rD +D =  

(7)  Use 1tan total

total

y
x

q - æ öD
= ç ÷Dè ø

 to  

get the angle, q . 
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Chapter 4:  Two-Dimensional Kinematics 
A.  Projectile Motion 
• See Table 4 to better understand how the projectile motion equations can be derived from the kinematic 

equations. 
• The kinematic equations involve one-dimensional motion whereas the projectile motion equations 

involve two-dimensional motion.  Two-dimensional motion means there is motion in both the 
horizontal and vertical directions. 
• Recall that the equation for horizontal motion (ex. xx v tD = D ) and the equations for vertical motion 

(ex. ,y fv g t= - D , 21 ( )
2

y g tD = - D , 2
, 2y fv g y= - D ) are independent from each other. 

• Recall that velocity is constant and acceleration is zero in the horizontal direction. 
• Recall that acceleration is g = 9.81 m/s2 in the vertical direction. 

• When projectiles are launched at an angle, the range of the projectile is often calculated from 

  Δx = (vi cosθ )Δt and its time of flight is often calculate from 21( sin ) ( )
2iy v t g tqD = D - D . 

• Projectiles follow a parabolic pathway governed by     2
22 o

gy h x
v

æ ö
= -ç ÷

è ø
 

 
 

Table 4:  Relationship Between the Kinematic Equations and Projectile Motion Equations 
Kinematic Equations Missing 

Variable 
Projectile Motion, 

Zero Launch Angle 
Projectile Motion, 

General Launch Angle 
  Assumptions made: 

a g= -  and , 0o yv =  
Assumptions made: 

a g= - , , coso x ov v q= , 

and , sino y ov v q=  
 

o avex x v t= +  
 
a  

 

xx v tD =   

where .xv const=  

 
( cos )ox v tqD =   

where .xv const=  
 

ov v at= +  
 

 
xD  

 

yv gt= -  
 

siny ov v gtq= -  

 
21

2o ox x v t at= + +  

 

 
 

finalv  

 
21

2
y gtD = -  

 
21( sin )

2oy v t gtqD = -  

 
2 2 2ov v a x= + D  

 

 
tD  

 
2 2yv g y= - D  

 
2 2 2sin 2y ov v g yq= - D  

 
• For an object in free fall, the object stops accelerating when the force of air resistance,   F


Air , equals 

the weight,   W


.  The object has reached its maximum velocity, the terminal velocity.  
• When a quarterback throws a football, the angle for a high, lob pass is related to the angle for a low, 

bullet pass.  When both footballs are caught by a receiver standing in the same place, the sum of the 
launch angles is 90o. 

• In distance contests for projectiles launched by cannons, catapults, trebuchets, and similar devices, 
projectiles achieve the farthest distance when launched at a 45o angle. 
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• The range of a projectile launched at initial velocity ov  and angle q  is  
2

sin 2ovR
g

q
æ ö

= ç ÷
è ø

 

• The maximum height of a projectile above its launch site is     
2 2

max
sin
2

ovy
g
q

=  

 
 
Chapter 5:  Newton’s Laws of Motion 
 

 
Table 5:  Newton’s Laws of Motion 

 Modern Statement for Law Translation 
Newton’s First Law: 
(Law of Inertia) 
Recall that mass is a measure of 
inertia. 

If the net force on an object is 
zero, its velocity is constant. 

An object at rest will remain at 
rest.  An object in motion will 
remain in motion at constant 
velocity unless acted upon by an 
external force. 

Newton’s Second Law: An object of mass m  has an 

acceleration   a


 given by the net 
force   F


∑  divided by m .  That 

is 
  
a

=

F


∑
m

 

netF ma=  

Newton’s Third Law: 
Recall action-reaction pairs 

For every force that acts on an 
object, there is a reaction force 
acting on a different object that is 
equal in magnitude and opposite 
in direction. 

For every action, there is an 
equal but opposite reaction. 

 
A.  Survey of Forces 
• A force is a push or a pull.  The unit of force is the Newton (N); 1 N = 1 kg-m/s2 
• See Newton’s laws of motion in Table 5.  Common forces on a moving object include an applied force, 

a frictional force, a weight, and a normal force. 
• Contact forces are action-reaction pairs of forces produced by physical contact of two objects.  Review 

calculations regarding contact forces between two or more boxes. 
• Field forces like gravitational forces, electrostatic forces, and magnetic forces do not require direct 

contact.  They are studied in later chapters. 
• Forces on objects are represented in free-body diagrams.  They are drawn with the tails of the vectors 

originating at an object’s center of mass. 
• Weight,   W


, is the gravitational force exerted by Earth on an object whereas mass, m , is a measure of 

the quantity of matter in an object (W mg= ).  Mass does not depend on gravity. 

• Apparent weight,   W


a , is the force felt from contact with the floor or a scale in an accelerating system.  
For example, the sensation of feeling heavier or lighter in an accelerating elevator. 

• The normal force,   N


, is perpendicular to the contact surface along which an object moves or is capable 
of moving.  Thus, for an object on a level surface,   N


 and   W


 are equal in size but opposite in direction.  
However, for an object on a ramp, this statement is not true because   N


 is perpendicular to the surface 

of the ramp. 
• Tension,   T


, is the force transmitted through a string.  The tension is the same throughout the length of 

an ideal string. 
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• The force of an ideal spring stretched or compressed by an amount x  is given by Hooke’s Law, 

  F


x = −kx .  Note that if we are only interested in magnitude, we use F kx=  where k is the spring or 
force constant.  Hooke’s Law is also used for rubber bands, bungee cords, etc. 

 
 
Chapter 6:  Applications of Newton’s Laws 
A.  Friction 

• Coefficient of static friction = ,maxS
S

F
N

µ =  where   F


S ,max is the max. force due to static friction. 

• Coefficient of kinetic friction = K
K

F
N

µ =  where   F


K  is the force due to kinetic friction. 

• A common lab experiment involves finding the angle at which an object just begins to slide down a 
ramp.  In this case, a simple expression can be derived to determine the coefficient of static friction:  

tanSµ q= .  Note that this expression is independent of the mass of the object. 
 
B.  Newton’s Second Law Problems (Includes Ramp Problems) 
1. Draw a free-body diagram to represent the problem. 
2. If the problem involves a ramp, rotate the x- and y-axes so that the x-axis corresponds to the surface of 

the ramp. 
3. Construct a vector table including all of the forces in the free-body diagram.  For the vector table’s 

column headings, use vector, x-direction, and y-direction. 
4. Determine the column total in each direction: 

a. If the object moves in that direction, the total is ma . 
b. If the object does not move in that direction, the total is zero. 
c. Since this is a Newton’s Second Law problem, no other choices besides zero and ma  are possible. 

5. Write the math equations for the sum of the forces in the x- and y-directions, and solve the problem.  It 
is often helpful to begin with the y-direction since useful expressions are derived that are sometimes 
helpful later in the problem.  Recall that the math equations regarding friction and weight are often 
substituted into the math equations to help solve the problem. 

 
C.  Equilibrium 
• An object is in translational equilibrium if the net force acting on it is zero,    F


= 0∑ . 

• Equivalently, an object is in equilibrium if it has zero acceleration. 
• If a vector table is needed for an object in equilibrium, then    F


x = 0∑  and    F


y = 0∑ . 

• Typical problems involve force calculations for objects pressed against walls and tension calculations 
for pictures on walls, laundry on a clothesline, hanging baskets, pulley systems, traction systems, 
connected objects, etc. 

  
D.  Connected Objects 
• Connected objects are linked physically, and thus, they are also linked mathematically.  For example, 

objects connected by strings have the same magnitude of acceleration. 
• When a pulley is involved, the x-y coordinate axes are often rotated around the pulley so that the objects 

are connected along the x-axis. 
• A classic example of a connected object is an Atwood’s Machine, which consists of two masses 

connected by a string that passes over a single pulley.  The acceleration for this system is given by 

2 1

1 2

m ma g
m m
æ ö-

= ç ÷+è ø
. 
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Chapter 7:  Work and Kinetic Energy 
A.  Work 
• A force exerted through a distance performs mechanical work. 
• When force and distance are parallel,     W Fd=      with Joules (J) or Nm as the unit of work. 
• When force and distance are at an angle, only the component of force in the direction of motion is used 

to compute the work:      ( cos ) cosW F d Fdq q= =  
• Work is negative if the force opposes the motion (q >90o).  Also, 1 J = 1 Nm = 1 kg-m2/s2. 

• If more than one force does the work, then     
1

n

Total i
i

W W
=

=å  

• The work-kinetic energy theorem states that      2 21 1
2 2Total f i f iW K K K mv mv= D = - = -       

• See Table 6 for more information about kinetic energy. 

• In thermodynamics,    ( )A FW Fd Fd Ad P V
A A

æ ö æ ö= = = = Dç ÷ ç ÷
è ø è ø

   for work done on or by a gas. 

 
 

Table 6:  Kinetic Energy 
Kinetic Energy Type Equation Comments 

 
Kinetic Energy as a 
Function of Motion: 

 
21

2
K mv=  

 

 
Used to represent kinetic energy 
in most conservation of 
mechanical energy problems. 

 
Kinetic Energy as a 
Function of Temperature: 

 
21 3

2 2ave
ave

mv K kTæ ö = =ç ÷
è ø

 

 

 
Kinetic theory relates the 
average kinetic energy of the 
molecules in a gas to the Kelvin 
temperature of the gas. 

 
B.  Determining Work from a Plot of Force Versus Position 
• In a plot of force versus position, work is equal to the area between the force curve and the displacement 

on the x-axis.  For example, work can be easily computed using W Fd=  when rectangles are present 
in the diagram. 

• For the case of a spring force, the work to stretch or compress a distance x  from equilibrium is 
21

2
W kx= .  On a plot of force versus position, work is the area of a triangle with base x  

(displacement) and height kx  (magnitude of force using Hooke’s Law, F kx= ). 
 
C.  Determining Work in a Block and Tackle Lab 
• The experimental work done against gravity, LoadW , is the same as the theoretical work done by the 

spring scale, ScaleW . 

• 
  
WOutput =WLoad = FdLoad =W


dLoad = mgdLoad      where Loadd  = distance the load is raised. 

• Input Scale ScaleW W Fd= =     where F  = force read from the spring scale and Scaled  = distance the scaled 
moved from its original position. 

• Note that the force read from the scale is ½ of the weight when two strings are used for the pulley 
system, and the force read is ¼ of the weight when four strings are used. 
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D.  Power 

• WP
t

=       or      P Fv=      with Watts (W) as the unit of Power. 

• 1 W = 1 J/s     and     746 W = 1 hp     where hp is the abbreviation for horsepower. 
 
 
Chapter 8:  Potential Energy and Conservation of Energy 
A.  Conservative Forces Versus Nonconservative Forces 
1. Conservative Forces 

• A conservative force does zero total work on any closed path.  In addition, the work done by a 
conservative force in going from point A to point B is independent of the path from A to B.  In 
other words, we can use the conservation of mechanical energy principle to solve complex 
problems because the problems only depend on the initial and final states of the system. 

• In a conservative system, the total mechanical energy remains constant:  i fE E= .      Since 

E U K= + , it follows that i i f fU K U K+ = + .  See Table 6 for kinetic energy, K , and Table 7 
for potential energy, U , for additional information. 

• For a ball thrown upwards, describe the shape of the kinetic energy, potential energy, and total 
energy curves on a plot of energy versus time. 

• Examples of conservative forces are gravity and springs. 
2. Nonconservative Forces 

• The work done by a nonconservative force on a closed path is not zero.  In addition, the work 
depends on the path going from point A to point B. 

• In a nonconservative system, the total mechanical energy is not constant.  The work done by a 
nonconservative force is equal to the change in the mechanical energy of a system:  

Nonconservative nc f iW W E E E= = D = -  . 

• Examples of nonconservative forces include friction, air resistance, tension in ropes and cables, 
and forces exerted by muscles and motors. 

 
 

 
Table 7:  Potential Energy 

Potential Energy Type Equation Comments 
 
Gravitational Potential 
Energy: 

 
U mgh=  

 
Good approximation for an 
object near sea level on the 
Earth’s surface. 

 
Gravitational Potential 
Energy Between Two Point 
Masses: 

 
1 2mmU G
r

= -     where 

G =  6.67 x 10-11 Nm2/kg2 
 = Universal Gravitation 

Constant 

 
Works well at any altitude or 
distance between objects in the 
universe; recall that r  is the 
distance between the centers of 
the objects. 

 
Elastic Potential Energy: 
 

 
21

2
U kx=  where k  is the force 

(spring) constant and x  is the 
distance the spring is stretched or 
compressed from equilibrium. 
 

 
Useful for springs, rubber bands, 
bungee cords, and other 
stretchable materials. 
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Chapter 9:  Linear Momentum and Collisions 
A.  Momentum 
• Linear momentum is given by        p


= mv


      with kg-m/s as the unit of momentum. 

• In a system having several objects,      
   
p


Total = p


i
i=1

n

∑ . 

• Newton’s second law can be expressed in terms of momentum.  The net force acting on an object is 

equal to the rate of change in its momentum:      
  
F


net =
Δ p


Δt
 

• When mass is constant,      
   
F


net =
Δ p


Δt
=

p f

 
− pi



Δt
=

mv f


− mvi



Δt
=

m(v f


− vi


)

Δt
= mΔv



Δt
= ma


 . 

• The impulse-momentum theorem states that        I

= F


aveΔt = Δ p


     where the quantity   F


aveΔt  is 
called the impulse, I .  For problem-solving purposes, a more useful form of the impulse-momentum 
theorem is     

FΔt = m(v f − vi ) . 

• A practical application of the impulse-momentum theorem,   F
!"

aveΔt = Δ p
!"

, involves auto air bags.  In 
an automobile collision, the change in momentum,  Δp , remains constant.  Thus, an increase in 

collision time, tD , will result in a decreased force of impact,   F


, reducing personal injury. 
 
B.  Collisions 
• For a system of objects, the conservation of linear momentum principle states that the net momentum 

is conserved if the net external force acting on the system is zero.  In other words, i fp p= .   

• For an elastic collision,   1 1 2 2 1 1 2 2i i f fm v m v m v m v+ = +    and for a perfectly inelastic collision,   

1 1 2 2 1 2( )i i fm v m v m m v+ = + .   See the collision types in Table 8. 

• In an elastic collision in one dimension where mass 1m  is moving with an initial velocity ov , and mass 

2m  is initially at rest, the velocities of the masses after the collision are:     1 2
1,

1 2
f o

m mv v
m m
æ ö-

= ç ÷+è ø
     and     

1
2,

1 2

2
f o

mv v
m m
æ ö

= ç ÷+è ø
. 

 
 

Table 8:  Collision Types 
Collision Type 
and Example 

Do the Objects 
Stick Together? 

Is Momentum 
Conserved? 

Is Kinetic Energy 
Conserved? 

Elastic: 
No permanent deformation 
occurs; billiard balls collide. 

 
No 

 
Yes 

 
Yes 

Inelastic: 
Permanent deformation occurs; 
Most automobile collisions. 

 
No 

 
Yes 

 
No 

Perfectly Inelastic: 
Permanent deformation occurs and 
objects lock together moving as a 
single unit; train cars collide and lock 
together. 

 
Yes 

 
Yes 

 
No 
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Chapter 10:  Rotational Kinematics and Energy 
A.  Rotational Motion 

• Angular position, , in radians is given by  where  is arc length and  is radius. 

• Recall that  
  
θ(rad) = 2π radians

360o

⎛
⎝⎜

⎞
⎠⎟
θ(deg) . 

• Counterclockwise (CCW) rotations are positive, and clockwise (CW) rotations are negative. 
• In rotational motion, there are two types of speeds (angular speed and tangential speed) and three types 

of accelerations (angular acceleration, tangential acceleration, and centripetal acceleration).  See Table 
9 for a comparison. 

• Since velocity is a vector, there are two ways that an acceleration can be produced:  (1)  changing the 
velocity’s magnitude and (2) changing the velocity’s direction.  In centripetal acceleration, the 
velocity’s direction changes. 

• When a person drives a car in a circle at constant speed, the car has a centripetal acceleration due to its 
changing direction, but it has no tangential acceleration due to its constant speed. 

• The total acceleration of a rotating object is the vector sum of its tangential and centripetal accelerations. 
 

 
Table 9:  Comparing Angular and Tangential Speed and 

Angular, Tangential, and Centripetal Acceleration  
Calculation Equations Units, Comments 

 
Angular Speed: 

 

 

 

 
• radians/s 
• Same value for horses A and 

B, side-by-side on a merry-
go-round. 

 
Tangential Speed: 

 
 

 

 
• m/s 
• Different values for horses 

A and B, side-by-side on a 
merry-go-round. 

 
Angular Acceleration: 

 

 

 

 
• radians/s2 

• Same value for horses A and 
B, side-by-side on a merry-
go-round. 

 
Tangential Acceleration: 

 
 

 

 
• m/s2 

• Different values for horses 
A and B, side-by-side on a 
merry-go-round. 

 
Centripetal Acceleration: 

 

 

 

 
• m/s2 

•  is perpendicular to  

with  directed toward the 

center of the circle and  
tangent to it. 

 
  

qD
s
r

q D
D = sD r

ave t
qw D

=
D

tv rw=

ave t
wa D

=
D

ta ra=

2
2t

c
va r
r

w= =
ca ta

ca

ta
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• Centripetal force, CF , is a force that maintains circular motion:  
2

2t
C C

mvF ma mr
r

w= = =  

• The period, T , is the time required to complete one full rotation.  If the angular speed is constant, then     
2T p
w

= . 

• The equations for rotational kinematics are the same as the equations for linear kinematics.  See Table 
10 for a comparison. 

 
 

 
Table 10:  Kinematic equations for Rotational Motion 

Linear Equations Angular Equations 
 

o avex x v t= +  
 

 

 θ = θo +ω avet  

 

ov v at= +  
 

 

 ω =ω o +αt  
 

 
21

2o ox x v t at= + +  

 

 

  
θ = θo +ω ot +

1
2
αt2  

 
 
2 2 2ov v a x= + D  

 

 

  ω
2 =ω o

2 + 2α (Δθ )  
 

 
 
• A comparison of linear and angular inertia, velocity, acceleration, Newton’s second law, work, kinetic 

energy, and momentum are presented in Table 11. 
• The moment of inertia, , is the rotational analog to mass in linear systems.  It depends on the shape 

or mass distribution of the object.  In particular, an object with a large moment of inertia is difficult to 
start rotating and difficult to stop rotating.  See Table 10-1 on p.298 for moments of inertia for uniform, 
rigid objects of various shapes and total mass. 

• The greater the moment of inertia, the greater an object’s rotational kinetic energy.   
• An object of radius , rolling without slipping, translates with linear speed  and rotates with angular 

speed     . 

 
  

I

r v
v
r

w =
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Table 11:  Comparing Equations for Linear Motion and Rotational Motion 
Measurement or Calculation Linear Equations Angular Equations 

 
Inertia: 

 
Mass, m 
 

 
 where a constant 

 
Average Velocity: 

 

 

 

 

 

 
Average Acceleration: 

 

 

 

 

 

 
Newton’s Second Law: 

 
 

 

 
 

 
Work: 

 
 

 

 
 

 
Kinetic Energy: 

 

 

 

 

 

 
Momentum: 

 
 

 

 
 

 
 
Chapter 11:  Rotational Dynamics and Static Equilibrium 
A.  Torque 
• A tangential force, , applied at a distance, , from the axis of rotation produces a torque      

in Nm.  (Since  is perpendicular to , this is sometimes written as .) 
• A force applied at an angle to the radial direction produces the torque  
• Counterclockwise torques are positive, and clockwise torques are negative. 
• The rotational analog of force, , is torque, , where  moment of inertia and  

angular acceleration. 
• The conditions for an object to be in static equilibrium are that the total force and the total torque acting 

on the object must be zero:     , , .     Related problems often involve 
bridges, scaffolds, signs, and rods held by wires.  

 
 
B.  Solving Static Equilibrium Problems 
1. Construct a diagram showing all of the forces. 
2. Create an equation adding the forces together. 

• Remember to enter correct signs in your force equation.  For example, upward forces are positive 
and downward forces are negative. 

• Since the object is not moving, set the force equation equal to zero.  ( ) 

2I kmr= k =

ave
xv
t

D
=
D ave t

qw D
=
D

ave
va
t

D
=
D ave t

wa D
=
D

netF ma= I F rt a ^= =

cosW Fd q= W tq=

21
2

K mv= 21
2

K Iw=

p mv= L Iw=

F r rFt =
F r F rt ^=

sinrFt q=

F ma= It a= I = a =

0xF =å 0yF =å 0t =å

  F = 0∑
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3. Create an equation adding the torques together.   
• If you are not sure what to do: 

• Start by writing the forces again leaving some space between them.   
• Multiply each force by an appropriate distance.   
• Each force and distance pair will have the same subscript. 

• Choose an axis of rotation in your diagram.  It is helpful if your choice eliminates one of the two 
unknown forces.  Then you can solve for the other force.  

• Remember to enter correct signs in your torque equation.  Consider whether each force will create 
a counterclockwise or clockwise rotation resulting in a positive or negative torque, respectively. 

• Since the object is not moving, set the torque equation equal to zero.  ( ) 

4. Substitute numbers in your torque equation and solve for the unknown force. 
5. Substitute the force you determined in the last step into the force equation and solve for the other 

unknown force.  

 
C.  Angular Momentum 
• The rotational analog of momentum, , is angular momentum,  in kg-m2/s, where = 

moment of inertia and  angular velocity. 
• If the net external torque acting on a system is zero, its angular momentum is conserved and . 
 
 
D.  Simple Machines 
• All machines are combinations or modifications of six fundamental types of machines called simple 

machines. 
• Simple machines include the lever, inclined plane, wheel and axle, wedge, pulley(s), and screw.   

• Mechanical advantage, , is defined as      .     It is a number describing how 

much force or distance is multiplied by a machine.  
• Efficiency is a measure of how well a machine works, and  is calculated using     

     where  is the work output and  is the work input. 

 
 
Chapter 12:  Gravity 
A.  General Concepts About Gravity and Kepler’s Laws 
• Newton’s Law of Universal Gravitation shows that the force of gravity between two point masses, 1m  

and 2m , separated by a distance r  is      1 2
2

mmF G
r

=       where G is the universal gravitation constant, 

G =  6.67x10-11 Nm2/kg2 .  Remember that r  is the distance between the centers of the point masses. 
• In Newton’s Law of Universal Gravitation, notice that the force of gravity decreases with distance, r , 

as 2

1
r

.  This is referred to as an inverse square dependence. 

• The superposition principle can be applied to gravitational force.  If more than one mass exerts a 
gravitational force on a given object, the net force is simply the vector sum of each individual force.  
(The superposition principle is also used for electrostatic forces, electric fields, electric potentials, 
electric potential energies, and wave interference.) 
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• Replacing the Earth with a point mass at its center, the acceleration due to gravity at the surface of the 

Earth is given by      
2
Earth

Earth

GMg
R

= .      A similar equation is used to calculate the acceleration due to 

gravity at the surface of other planets and moons in the Solar System.   

• At some altitude, h , above the Earth,     
( )2

Earth
h

Earth

Mg G
R h

=
+

      can be used to calculate the 

acceleration due to gravity. 
• In 1798, Henry Cavendish first determined the value of G, which allowed him to calculate the mass of 

the Earth using      
2
Earth

Earth
gRM
G

= . 

• Using Tycho Brahe’s observations concerning the planets, Johannes Kepler formulated three laws for 
orbital motion as shown in Table 12.  Newton later showed that each of Kepler’s laws follows as a 
direct consequence of the universal law of gravitation. 

• As previously mentioned in the potential energy table, the gravitational potential energy, U , between 

two point masses 1m  and 2m  separated by a distance r  is     1 2mmU G
r

= - .       This equation is used 

in mechanical energy conservation problems for astronomical situations. 
• Energy conservation considerations allow the escape speed to be calculated for an object launched from 

the surface of the Earth:      
2 Earth

e
Earth

GMv
R

= =  11,200 m/s »  25,000 mi/h. 

 
 

 
Table 12:  Kepler’s Laws of Orbital Motion 

Law Modern Statement for Law Alternate Description 
1st Law: Planets follow elliptical orbits, with the 

Sun at one focus of the ellipse. 
 

The paths of the planets are ellipses, with 
the center of the Sun at one focus. 

2nd Law: As a planet moves in its orbit, it sweeps 
out an equal amount of area in an equal 
amount of time. 
 

An imaginary line from the Sun to a planet 
sweeps out equal areas in equal time 
intervals. 

3rd Law: The period, T , of a planet increases as its 
mean distance from the Sun, r , raised to 
the 3/2 power.  That is, 

3/ 22

S

T r
GM
pæ ö

= =ç ÷ç ÷
è ø

(constant) 3/ 2r  

 

The square of a planet’s period, 2T , is 
proportional to the cube of its radius, 3r .  

That is, 
2

2 34

S

T r
GM
p

= =(constant) 3r  

where SM =  mass of the Sun. 

 
 


