0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | Setting \( y = 0 \) at the compressed position of the spring | By setting \( y = 0 \) at the position where the spring is compressed, we simplify the calculations for the potential energy of the projectile when it is launched. This allows us to treat the initial potential energy as entirely elastic and the final height as purely gravitational potential energy. |
Next, let’s calculate the spring constant:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \(EPE = \frac{1}{2}kx^2\) | Elastic Potential Energy (EPE) stored in the compressed spring. \( x \) is the compression distance. |
| 2 | \(GPE = mgh\) | Gravitational Potential Energy (GPE) at the maximum height \( h \) above the initial position. \( m \) is the mass, \( g \) is gravitational acceleration, and \( h \) is the height. |
| 3 | \(\frac{1}{2}kx^2 = mgh\) | Applying conservation of energy, the EPE at the beginning is converted to GPE at the maximum height. |
| 4 | \(k = \frac{2mgh}{x^2}\) | Solving for the spring constant \( k \). |
| 5 | \(k = \frac{2 (0.035 \, \text{kg}) (9.8 \, \text{m/s}^2) (25 \, \text{m})}{(0.120 \, \text{m})^2}\) | Substitute the known values: \( m = 0.035 \, \text{kg} \), \( g = 9.8 \, \text{m/s}^2 \), \( h = 25 \, \text{m} \), \( x = 0.120 \, \text{m} \). |
| 6 | \(k = \frac{2 \cdot 0.035 \cdot 9.8 \cdot 25}{0.0144}\) | Calculate the values inside the equation. |
| 7 | \(k = \frac{17.15}{0.0144} \approx 1191.67 \, \text{N/m}\) | Divide to find \( k \). Therefore, the spring constant is approximately \( \boxed{1191.67 \, \text{N/m}} \). |
Finally, let’s calculate the speed:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \(EPE = \frac{1}{2}kx^2\) | Using the elastic potential energy stored in the spring. |
| 2 | \(KE = \frac{1}{2}mv^2\) | Kinetic Energy (KE) of the projectile at the moment it leaves the spring. \( m \) is the mass and \( v \) is the velocity. |
| 3 | \(\frac{1}{2}kx^2 = \frac{1}{2}mv^2\) | Applying conservation of energy, the EPE is converted to KE when the projectile leaves the spring. |
| 4 | \(kx^2 = mv^2\) | Eliminate the common factor (1/2) on both sides. |
| 5 | \(v = \sqrt{\frac{kx^2}{m}}\) | Solve for \( v \), the velocity of the projectile as it leaves the spring. |
| 6 | \(v = \sqrt{\frac{1191.67 \, \text{N/m} \cdot (0.120 \, \text{m})^2}{0.035 \, \text{kg}}}\) | Substitute the known values: \( k = 1191.67 \, \text{N/m} \), \( x = 0.120 \, \text{m} \), \( m = 0.035 \, \text{kg} \). |
| 7 | \(v = \sqrt{\frac{1191.67 \cdot 0.0144}{0.035}}\) | Calculate the values inside the equation. |
| 8 | \(v = \sqrt{489.67} \approx 22.12 \, \text{m/s}\) | Therefore, the speed of the projectile as it leaves the spring is approximately \( \boxed{22.12 \, \text{m/s}} \). |
Just ask: "Help me solve this problem."
A block of mass [katex] m [/katex] is moving on a horizontal frictionless surface with a speed [katex] v_0 [/katex] as it approaches a block of mass [katex] 2m [/katex] which is at rest and has an ideal spring attached to one side.
When the two blocks collide, the spring is completely compressed and the two blocks momentarily move at the same speed, and then separate again, each continuing to move.
A constant force of strength \( 20 \) \( \text{N} \) acts on an object of mass \( 3 \) \( \text{kg} \) as it moves a distance of \( 4 \) \( \text{m} \). If this force is applied perpendicular to the \( 4 \) \( \text{m} \) displacement, the work done by the force is equal to:
A ski lift carries skiers along a \(695 \, \text{m}\) slope inclined at \(34^\circ\). To lift a single rider, it is necessary to move \(72 \, \text{kg}\) of mass to the top of the lift. Under maximum load conditions, five riders per minute arrive at the top. If \(65\%\) of the energy supplied by the motor goes to overcoming friction, what average power must the motor supply?

A small block moving with a constant speed \(v\) collides inelastically with a block \(M\) attached to one end of a spring \(k\). The other end of the spring is connected to a stationary wall. Ignore friction between the blocks and the surface.
A box having a mass of \( 1.5 \) \( \text{kg} \) is accelerated across a table at \( 1.5 \) \( \text{m/s}^2 \). The coefficient of kinetic friction on the box is \( 0.3 \).
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?