AP Physics

Unit 4 - Energy

Intermediate

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

(a) Where to set \( y = 0 \):

Step Derivation/Formula Reasoning
1 Setting \( y = 0 \) at the compressed position of the spring By setting \( y = 0 \) at the position where the spring is compressed, we simplify the calculations for the potential energy of the projectile when it is launched. This allows us to treat the initial potential energy as entirely elastic and the final height as purely gravitational potential energy.

(b) Determine the spring constant \( k \):

Next, let’s calculate the spring constant:

Step Derivation/Formula Reasoning
1 \(EPE = \frac{1}{2}kx^2\) Elastic Potential Energy (EPE) stored in the compressed spring. \( x \) is the compression distance.
2 \(GPE = mgh\) Gravitational Potential Energy (GPE) at the maximum height \( h \) above the initial position. \( m \) is the mass, \( g \) is gravitational acceleration, and \( h \) is the height.
3 \(\frac{1}{2}kx^2 = mgh\) Applying conservation of energy, the EPE at the beginning is converted to GPE at the maximum height.
4 \(k = \frac{2mgh}{x^2}\) Solving for the spring constant \( k \).
5 \(k = \frac{2 (0.035 \, \text{kg}) (9.8 \, \text{m/s}^2) (25 \, \text{m})}{(0.120 \, \text{m})^2}\) Substitute the known values: \( m = 0.035 \, \text{kg} \), \( g = 9.8 \, \text{m/s}^2 \), \( h = 25 \, \text{m} \), \( x = 0.120 \, \text{m} \).
6 \(k = \frac{2 \cdot 0.035 \cdot 9.8 \cdot 25}{0.0144}\) Calculate the values inside the equation.
7 \(k = \frac{17.15}{0.0144} \approx 1191.67 \, \text{N/m}\) Divide to find \( k \). Therefore, the spring constant is approximately \( \boxed{1191.67 \, \text{N/m}} \).

(c) Determine the speed that the projectile is traveling the moment it leaves the spring:

Finally, let’s calculate the speed:

Step Derivation/Formula Reasoning
1 \(EPE = \frac{1}{2}kx^2\) Using the elastic potential energy stored in the spring.
2 \(KE = \frac{1}{2}mv^2\) Kinetic Energy (KE) of the projectile at the moment it leaves the spring. \( m \) is the mass and \( v \) is the velocity.
3 \(\frac{1}{2}kx^2 = \frac{1}{2}mv^2\) Applying conservation of energy, the EPE is converted to KE when the projectile leaves the spring.
4 \(kx^2 = mv^2\) Eliminate the common factor (1/2) on both sides.
5 \(v = \sqrt{\frac{kx^2}{m}}\) Solve for \( v \), the velocity of the projectile as it leaves the spring.
6 \(v = \sqrt{\frac{1191.67 \, \text{N/m} \cdot (0.120 \, \text{m})^2}{0.035 \, \text{kg}}}\) Substitute the known values: \( k = 1191.67 \, \text{N/m} \), \( x = 0.120 \, \text{m} \), \( m = 0.035 \, \text{kg} \).
7 \(v = \sqrt{\frac{1191.67 \cdot 0.0144}{0.035}}\) Calculate the values inside the equation.
8 \(v = \sqrt{489.67} \approx 22.12 \, \text{m/s}\) Therefore, the speed of the projectile as it leaves the spring is approximately \( \boxed{22.12 \, \text{m/s}} \).

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. Where the spring is fully compressed
  2. \(k = \frac{17.15}{0.0144} \approx 1191.67 \, \text{N/m}\)
  3. \(v = \sqrt{489.67} \approx 22.12 \, \text{m/s}\)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.