0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | Setting \( y = 0 \) at the compressed position of the spring | By setting \( y = 0 \) at the position where the spring is compressed, we simplify the calculations for the potential energy of the projectile when it is launched. This allows us to treat the initial potential energy as entirely elastic and the final height as purely gravitational potential energy. |
Next, let’s calculate the spring constant:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(EPE = \frac{1}{2}kx^2\) | Elastic Potential Energy (EPE) stored in the compressed spring. \( x \) is the compression distance. |
2 | \(GPE = mgh\) | Gravitational Potential Energy (GPE) at the maximum height \( h \) above the initial position. \( m \) is the mass, \( g \) is gravitational acceleration, and \( h \) is the height. |
3 | \(\frac{1}{2}kx^2 = mgh\) | Applying conservation of energy, the EPE at the beginning is converted to GPE at the maximum height. |
4 | \(k = \frac{2mgh}{x^2}\) | Solving for the spring constant \( k \). |
5 | \(k = \frac{2 (0.035 \, \text{kg}) (9.8 \, \text{m/s}^2) (25 \, \text{m})}{(0.120 \, \text{m})^2}\) | Substitute the known values: \( m = 0.035 \, \text{kg} \), \( g = 9.8 \, \text{m/s}^2 \), \( h = 25 \, \text{m} \), \( x = 0.120 \, \text{m} \). |
6 | \(k = \frac{2 \cdot 0.035 \cdot 9.8 \cdot 25}{0.0144}\) | Calculate the values inside the equation. |
7 | \(k = \frac{17.15}{0.0144} \approx 1191.67 \, \text{N/m}\) | Divide to find \( k \). Therefore, the spring constant is approximately \( \boxed{1191.67 \, \text{N/m}} \). |
Finally, let’s calculate the speed:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(EPE = \frac{1}{2}kx^2\) | Using the elastic potential energy stored in the spring. |
2 | \(KE = \frac{1}{2}mv^2\) | Kinetic Energy (KE) of the projectile at the moment it leaves the spring. \( m \) is the mass and \( v \) is the velocity. |
3 | \(\frac{1}{2}kx^2 = \frac{1}{2}mv^2\) | Applying conservation of energy, the EPE is converted to KE when the projectile leaves the spring. |
4 | \(kx^2 = mv^2\) | Eliminate the common factor (1/2) on both sides. |
5 | \(v = \sqrt{\frac{kx^2}{m}}\) | Solve for \( v \), the velocity of the projectile as it leaves the spring. |
6 | \(v = \sqrt{\frac{1191.67 \, \text{N/m} \cdot (0.120 \, \text{m})^2}{0.035 \, \text{kg}}}\) | Substitute the known values: \( k = 1191.67 \, \text{N/m} \), \( x = 0.120 \, \text{m} \), \( m = 0.035 \, \text{kg} \). |
7 | \(v = \sqrt{\frac{1191.67 \cdot 0.0144}{0.035}}\) | Calculate the values inside the equation. |
8 | \(v = \sqrt{489.67} \approx 22.12 \, \text{m/s}\) | Therefore, the speed of the projectile as it leaves the spring is approximately \( \boxed{22.12 \, \text{m/s}} \). |
Just ask: "Help me solve this problem."
Two balls are dropped from the roof of a building. One ball has twice as massive as the other and air resistance is negligible. Just before hitting the ground, the more massive ball has ball ____ the kinetic energy of the less massive ball.
A rocket of mass m is launched with kinetic energy K0, from the surface of the Earth. How much less kinetic energy does the rocket have at an altitude of two Earth radii in terms of the gravitational constant, G; the mass of the Earth, mE ; the radius of the Earth, RE ; and the mass of the rocket?
The efficiency of a pulley system is 55%. The
pulleys are used to raise a mass of 90.0 kg to a height of
5.60 m. What force is exerted on the rope of the pulley
system if the rope is pulled for 22 m in order to raise
the mass to the required height?
A bullet at speed [katex] v_0 [/katex] trikes and embeds itself in a block of wood which is suspended by a string, causing the bullet and block to rise to a maximum height h. Which of the following statements is true?
Two masses m1 and 4m1 are on an incline. Both surfaces have the same coefficient of kinetic friction. Both objects start from rest, at the same height. Which mass has the largest speed at the bottom?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.