0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | Setting \( y = 0 \) at the compressed position of the spring | By setting \( y = 0 \) at the position where the spring is compressed, we simplify the calculations for the potential energy of the projectile when it is launched. This allows us to treat the initial potential energy as entirely elastic and the final height as purely gravitational potential energy. |
Next, let’s calculate the spring constant:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \(EPE = \frac{1}{2}kx^2\) | Elastic Potential Energy (EPE) stored in the compressed spring. \( x \) is the compression distance. |
| 2 | \(GPE = mgh\) | Gravitational Potential Energy (GPE) at the maximum height \( h \) above the initial position. \( m \) is the mass, \( g \) is gravitational acceleration, and \( h \) is the height. |
| 3 | \(\frac{1}{2}kx^2 = mgh\) | Applying conservation of energy, the EPE at the beginning is converted to GPE at the maximum height. |
| 4 | \(k = \frac{2mgh}{x^2}\) | Solving for the spring constant \( k \). |
| 5 | \(k = \frac{2 (0.035 \, \text{kg}) (9.8 \, \text{m/s}^2) (25 \, \text{m})}{(0.120 \, \text{m})^2}\) | Substitute the known values: \( m = 0.035 \, \text{kg} \), \( g = 9.8 \, \text{m/s}^2 \), \( h = 25 \, \text{m} \), \( x = 0.120 \, \text{m} \). |
| 6 | \(k = \frac{2 \cdot 0.035 \cdot 9.8 \cdot 25}{0.0144}\) | Calculate the values inside the equation. |
| 7 | \(k = \frac{17.15}{0.0144} \approx 1191.67 \, \text{N/m}\) | Divide to find \( k \). Therefore, the spring constant is approximately \( \boxed{1191.67 \, \text{N/m}} \). |
Finally, let’s calculate the speed:
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \(EPE = \frac{1}{2}kx^2\) | Using the elastic potential energy stored in the spring. |
| 2 | \(KE = \frac{1}{2}mv^2\) | Kinetic Energy (KE) of the projectile at the moment it leaves the spring. \( m \) is the mass and \( v \) is the velocity. |
| 3 | \(\frac{1}{2}kx^2 = \frac{1}{2}mv^2\) | Applying conservation of energy, the EPE is converted to KE when the projectile leaves the spring. |
| 4 | \(kx^2 = mv^2\) | Eliminate the common factor (1/2) on both sides. |
| 5 | \(v = \sqrt{\frac{kx^2}{m}}\) | Solve for \( v \), the velocity of the projectile as it leaves the spring. |
| 6 | \(v = \sqrt{\frac{1191.67 \, \text{N/m} \cdot (0.120 \, \text{m})^2}{0.035 \, \text{kg}}}\) | Substitute the known values: \( k = 1191.67 \, \text{N/m} \), \( x = 0.120 \, \text{m} \), \( m = 0.035 \, \text{kg} \). |
| 7 | \(v = \sqrt{\frac{1191.67 \cdot 0.0144}{0.035}}\) | Calculate the values inside the equation. |
| 8 | \(v = \sqrt{489.67} \approx 22.12 \, \text{m/s}\) | Therefore, the speed of the projectile as it leaves the spring is approximately \( \boxed{22.12 \, \text{m/s}} \). |
Just ask: "Help me solve this problem."
A linear spring of force constant \( k \) is used in a physics lab experiment. A block of mass \( m \) is attached to the spring and the resulting frequency, \( f \), of the simple harmonic oscillations is measured. Blocks of various masses are used in different trials, and in each case, the corresponding frequency is measured and recorded. If \( f^{2} \) is plotted versus \( \frac{1}{m} \), the graph will be a straight line with slope
A \(90 \, \text{kg}\) individual is cycling up a hill inclined at \(30^\circ\) on a \(12 \, \text{kg}\) bicycle. The hill is quite steep, and the coefficient of static friction is \(0.85\). The cyclist ascends \(12 \, \text{m}\) up the hill and then pauses at the summit. They then start descending from rest and travel \(9 \, \text{m}\) before firmly applying the brakes, causing the wheels to lock.
In a town’s water system, pressure gauges in still water at street level read \( 150 \) \( \text{kPa} \). If a pipeline connected to the system breaks and shoots water straight up, how high above the street does the water shoot?
A theme park ride consists of a large vertical wheel of radius \( R \) that rotates counterclockwise on a horizontal axle through its center. The cars on the wheel move at a constant speed \( v \). Points \( A \) and \( D \) represent the position of a car at the highest and lowest point of the ride, respectively. While passing point \( A \), a student releases a small rock of mass \( m \), which falls to the ground without hitting anything. Which of the following best represents the kinetic energy of the rock when it is at the same height as point \( D \)?
A boulder is raised above the ground so that its potential energy is \(550 \, \text{J}\). Then it is dropped. Assuming \(92 \, \text{J}\) of energy was lost to air resistance, what is the kinetic energy of the boulder just before it hits the ground?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?