Step | Derivation/Formula | Reasoning |
---|---|---|

1 | W = \vec{F} \cdot \vec{d} | The work done W by a force \vec{F} on an object over a displacement \vec{d} is given by the dot product of the force and displacement vectors. |

2 | W = Fd \cos(\theta) | Expanding the dot product, where F is the magnitude of the force, d is the magnitude of the displacement, and \theta is the angle between the force and displacement vectors. If \theta = 90^\circ , then \cos(\theta) = 0 . |

3 | W = 0 | When the force is perpendicular to the displacement ( \theta = 90^\circ ), the work done by the force is zero, since \cos(90^\circ) = 0 . |

4 | Conservation of Mechanical Energy | When no work is done by non-conservative forces, the total mechanical energy (kinetic + potential) of the system is conserved. Here, since W = 0 for the non-conservative force, mechanical energy is conserved. |

From the reasoning above, the answer is:

**(b) The nonconservative force is perpendicular to the displacement of the object.** In this case, the work done by the nonconservative force is zero, hence, the principle of conservation of mechanical energy still applies.

Phy can also check your working. Just snap a picture!

- Statistics

Intermediate

Mathematical

GQ

An object with a mass m = 80 g is attached to a spring with a force constant k = 25 N/m. The spring is stretched 52.0 cm and released from rest. If it is oscillating on a horizontal frictionless surface, determine the velocity of the mass when it is halfway to the equilibrium position.

- Energy

Advanced

Conceptual

MCQ

How does the time *t _{1}* of a block

- Energy

Intermediate

Mathematical

FRQ

A car accelerates uniformly from rest to 29.4 m/s in 6.93 s along a level stretch of road. Ignoring friction, determine the average power in both watts and horsepower ( 1 \text{ horsepower} = 745.7 \text{ Watts} ) required to accelerate the car if:

- Energy

Advanced

Conceptual

MCQ

A lighter car and a heavier truck, each traveling to the right with the same speed v hit their brakes. The retarding frictional force F on both cars turns out to be constant and the same. After both vehicles travel a distance D (and both are still moving), which of the following statements is true?

- Energy

Advanced

Mathematical

MCQ

A simple pendulum consists of a sphere tied to the end of a string of negligible mass. The sphere is pulled back until the string is horizontal and then released from rest. Assume the gravitational potential energy is zero when the sphere is at its lowest point.

What angle will the string make with the horizontal when the kinetic energy and the potential energy of the sphere-Earth system are equal?

- Energy

Advanced

Mathematical

MCQ

From the figure above, determine the which characteristic fits this collision best.

- Energy, Momentum

Advanced

Mathematical

GQ

A 81 kg student dives off a 45 m tall bridge with an 18 m long bungee cord tied to his feet and to the bridge. You can consider the bungee cord to be a flexible spring. What spring constant must the bungee cord have for the student’s lowest point to be 2.0 m above the water?

- Energy, Springs

Intermediate

Mathematical

FRQ

A 0.0350 kg bullet moving horizontally at 425 m/s embeds itself into an initially stationary 0.550 kg block.

- Energy, Momentum

Intermediate

Mathematical

MCQ

A 1.0-kg object is moving with a velocity of 6.0 m/s to the right. It collides and sticks to a 2.0-kg object moving with a velocity of 3.0 m/s in the same direction. How much kinetic energy was lost in the collision?

- Energy, Momentum

Advanced

Mathematical

FRQ

A block of mass m is moving on a horizontal frictionless surface with a speed v_0 as it approaches a block of mass 2m which is at rest and has an ideal spring attached to one side.

When the two blocks collide, the spring is completely compressed and the two blocks momentarily move at the same speed, and then separate again, each continuing to move.

- Energy, Momentum

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

\Delta x = v_i t + \frac{1}{2} at^2 | F = ma |

v = v_i + at | F_g = \frac{G m_1m_2}{r^2} |

a = \frac{\Delta v}{\Delta t} | f = \mu N |

R = \frac{v_i^2 \sin(2\theta)}{g} |

Circular Motion | Energy |
---|---|

F_c = \frac{mv^2}{r} | KE = \frac{1}{2} mv^2 |

a_c = \frac{v^2}{r} | PE = mgh |

KE_i + PE_i = KE_f + PE_f |

Momentum | Torque and Rotations |
---|---|

p = m v | \tau = r \cdot F \cdot \sin(\theta) |

J = \Delta p | I = \sum mr^2 |

p_i = p_f | L = I \cdot \omega |

Simple Harmonic Motion |
---|

F = -k x |

T = 2\pi \sqrt{\frac{l}{g}} |

T = 2\pi \sqrt{\frac{m}{k}} |

Constant | Description |
---|---|

g | Acceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface |

G | Universal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2 |

\mu_k and \mu_s | Coefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion. |

k | Spring constant, in \text{N/m} |

M_E = 5.972 \times 10^{24} , \text{kg} | Mass of the Earth |

M_M = 7.348 \times 10^{22} , \text{kg} | Mass of the Moon |

M_M = 1.989 \times 10^{30} , \text{kg} | Mass of the Sun |

Variable | SI Unit |
---|---|

s (Displacement) | \text{meters (m)} |

v (Velocity) | \text{meters per second (m/s)} |

a (Acceleration) | \text{meters per second squared (m/s}^2\text{)} |

t (Time) | \text{seconds (s)} |

m (Mass) | \text{kilograms (kg)} |

Variable | Derived SI Unit |
---|---|

F (Force) | \text{newtons (N)} |

E, PE, KE (Energy, Potential Energy, Kinetic Energy) | \text{joules (J)} |

P (Power) | \text{watts (W)} |

p (Momentum) | \text{kilogram meters per second (kgm/s)} |

\omega (Angular Velocity) | \text{radians per second (rad/s)} |

\tau (Torque) | \text{newton meters (Nm)} |

I (Moment of Inertia) | \text{kilogram meter squared (kgm}^2\text{)} |

f (Frequency) | \text{hertz (Hz)} |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`\text{5 km}`

Use the conversion factors for kilometers to meters and meters to millimeters:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}`

Perform the multiplication:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}`

Simplify to get the final answer:

`\boxed{5 \times 10^6 \, \text{mm}}`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | 10^{-12} | 0.000000000001 |

Nano- | n | 10^{-9} | 0.000000001 |

Micro- | µ | 10^{-6} | 0.000001 |

Milli- | m | 10^{-3} | 0.001 |

Centi- | c | 10^{-2} | 0.01 |

Deci- | d | 10^{-1} | 0.1 |

(Base unit) | – | 10^{0} | 1 |

Deca- or Deka- | da | 10^{1} | 10 |

Hecto- | h | 10^{2} | 100 |

Kilo- | k | 10^{3} | 1,000 |

Mega- | M | 10^{6} | 1,000,000 |

Giga- | G | 10^{9} | 1,000,000,000 |

Tera- | T | 10^{12} | 1,000,000,000,000 |

- Some answers may be slightly off by 1% depending on rounding, etc.
- Answers will use different values of gravity. Some answers use 9.81 m/s
^{2}, and other 10 m/s^{2 }for calculations. - Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
- Bookmark questions that you can’t solve so you can come back to them later.
- Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

The most advanced version of Phy. Currently 50% off, for early supporters.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages
- Unlimited Image Uploads
- Unlimited Smart Actions
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- 200% Memory Boost
- 150% Better than GPT
- 75% More Accurate, 50% Faster
- Mobile Snaps
- Focus Mode
- No Ads