AP Physics

Unit 4 - Energy

Advanced

Conceptual

MCQ

You're a Phy Pro Member

Supercharge UBQ with

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 [katex] W = \vec{F} \cdot \vec{d} [/katex] The work done [katex] W [/katex] by a force [katex] \vec{F} [/katex] on an object over a displacement [katex] \vec{d} [/katex] is given by the dot product of the force and displacement vectors.
2 [katex] W = Fd \cos(\theta) [/katex] Expanding the dot product, where [katex] F [/katex] is the magnitude of the force, [katex] d [/katex] is the magnitude of the displacement, and [katex] \theta [/katex] is the angle between the force and displacement vectors. If [katex] \theta = 90^\circ [/katex], then [katex] \cos(\theta) = 0 [/katex].
3 [katex] W = 0 [/katex] When the force is perpendicular to the displacement ([katex] \theta = 90^\circ [/katex]), the work done by the force is zero, since [katex] \cos(90^\circ) = 0 [/katex].
4 Conservation of Mechanical Energy When no work is done by non-conservative forces, the total mechanical energy (kinetic + potential) of the system is conserved. Here, since [katex] W = 0 [/katex] for the non-conservative force, mechanical energy is conserved.

From the reasoning above, the answer is:
(b) The nonconservative force is perpendicular to the displacement of the object. In this case, the work done by the nonconservative force is zero, hence, the principle of conservation of mechanical energy still applies.

Need Help? Ask Phy To Explain This Problem

Phy can also check your working. Just snap a picture!

Phy Chat
Just Drag and Drop!
Quick Actions ?

Topics in this question

1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
Made By Nerd-Notes.com
KinematicsForces
[katex]\Delta x = v_i t + \frac{1}{2} at^2[/katex][katex]F = ma[/katex]
[katex]v = v_i + at[/katex][katex]F_g = \frac{G m_1m_2}{r^2}[/katex]
[katex]a = \frac{\Delta v}{\Delta t}[/katex][katex]f = \mu N[/katex]
[katex]R = \frac{v_i^2 \sin(2\theta)}{g}[/katex] 
Circular MotionEnergy
[katex]F_c = \frac{mv^2}{r}[/katex][katex]KE = \frac{1}{2} mv^2[/katex]
[katex]a_c = \frac{v^2}{r}[/katex][katex]PE = mgh[/katex]
 [katex]KE_i + PE_i = KE_f + PE_f[/katex]
MomentumTorque and Rotations
[katex]p = m v[/katex][katex]\tau = r \cdot F \cdot \sin(\theta)[/katex]
[katex]J = \Delta p[/katex][katex]I = \sum mr^2[/katex]
[katex]p_i = p_f[/katex][katex]L = I \cdot \omega[/katex]
Simple Harmonic Motion
[katex]F = -k x[/katex]
[katex]T = 2\pi \sqrt{\frac{l}{g}}[/katex]
[katex]T = 2\pi \sqrt{\frac{m}{k}}[/katex]
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. Some answers may be slightly off by 1% depending on rounding, etc.
  2. Answers will use different values of gravity. Some answers use 9.81 m/s2, and other 10 m/s2 for calculations.
  3. Variables are sometimes written differently from class to class. For example, sometime initial velocity [katex] v_i [/katex] is written as [katex] u [/katex]; sometimes [katex] \Delta x [/katex] is written as [katex] s [/katex].
  4. Bookmark questions that you can’t solve so you can come back to them later. 
  5. Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.