0 attempts
0% avg
UBQ Credits
To solve the problem of finding the initial speed, [katex] v_0 [/katex], of an arrow shot horizontally, we can use the equations for projectile motion. The given parameters are that the arrow was shot from a horizontal distance of 20 meters (the range, [katex] R [/katex]) and it lands 0.05 meters below the center of the target (this is the vertical displacement, [katex] y [/katex]).
Here is the derivation using kinematic equations:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] y = \frac{1}{2} g t^2 [/katex] | The vertical motion of the arrow is only affected by gravity, so we use the kinematic equation for displacement, where [katex] g [/katex] is the acceleration due to gravity (approximately 9.81 m/s2), and [katex] t [/katex] is the time of flight. |
2 | [katex] t = \sqrt{\frac{2y}{g}} [/katex] | To find the time of flight, [katex] t [/katex], we rearrange the formula for displacement to solve for [katex] t [/katex]. Plugging in [katex]y = 0.05 [/katex] m, we can calculate the time. |
3 | [katex] t = \sqrt{\frac{2 \times 0.05}{9.81}} [/katex] | Substitute the values into the formula to calculate [katex] t [/katex]. |
4 | [katex] t \approx 0.1005 \text{ seconds} [/katex] | Do the math to derive the approximate time value. |
5 | [katex] R = v_0 t [/katex] | The horizontal motion is described by this equation, where [katex] R [/katex] is the range (horizontal distance traveled) and [katex]v_0 [/katex] is the initial horizontal velocity. |
6 | [katex] v_0 = \frac{R}{t} [/katex] | Rearranging the equation allows us to solve for [katex]v_0 [/katex] using the calculated [katex]t [/katex] and given [katex]R [/katex], which is 20 meters. |
7 | [katex] v_0 = \frac{20}{0.1005} [/katex] | Substitute [katex] t [/katex] and [katex] R [/katex] into the equation to find [katex]v_0 [/katex]. |
8 | [katex] v_0 \approx 199.0 \text{ m/s} [/katex] | Compute the result to get the initial speed of the arrow. |
This calculation shows that the initial speed of the arrow was approximately 199.0 meters per second.
Just ask: "Help me solve this problem."
A diver springs upward from a diving board. At the instant she contacts the water, her speed is \( 8.90 \, \text{m/s} \), and her body is extended at an angle of \( 75.0^\circ \) with respect to the horizontal surface of the water. At this instant, her vertical displacement is \( -3.00 \, \text{m} \), where downward is the negative direction. Determine her initial velocity, both magnitude and direction.
A ball is shot from the top of a building with an initial velocity of \( 18 \) \( \text{m/s} \) at an angle \( \theta = 42^\circ \) above the horizontal.
A ball is tossed straight up while the thrower is standing in a moving train car that is moving at a constant velocity. Neglecting air resistance, what is the path of the ball relative to the ground outside the train?
A projectile is launched at angle \( \theta \) to the horizontal, with velocity \( v \), maximum vertical displacement \( s \), and angle \( \theta \) between \( 0^{\circ} \) and \( 45^{\circ} \). What will the maximum vertical displacement be if the projectile is now launched at an angle of \( 2 \theta \) from the horizontal with velocity \( v \)?
A car accelerates from rest with an acceleration of \( 3.5 \, \text{m/s}^2 \) for \( 10 \, \text{s} \). After this, it continues at a constant speed for an unknown amount of time. The driver notices a ramp \( 50 \, \text{m} \) ahead and takes \( 0.6 \, \text{s} \) to react. After reacting, the driver hits the brakes, which slow the car with an acceleration of \( 7.2 \, \text{m/s}^2 \). Unfortunately, the driver does not stop in time and goes off the \( 3 \, \text{m} \) high ramp that is angled at \( 27^\circ \).
200 m/s
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.