0 attempts
0% avg
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[F_T \Delta x – F_{\text{air}} \Delta x = m g h + \tfrac{1}{2} m v_x^2\] | Conservation of energy: work done by thrust minus work lost to air resistance equals gain in gravitational potential energy \(mgh\) plus kinetic energy \(\tfrac{1}{2} m v_x^2\). |
| 2 | \[W_T = F_T \Delta x = 275\,\text{N} \times 90\,\text{m} = 2.475 \times 10^{4}\,\text{J}\] | Thrust acts over \(\Delta x = 90\,\text{m}\). |
| 3 | \[\Delta PE = m g h = 2\,\text{kg} \times 9.8\,\tfrac{\text{m}}{\text{s}^2} \times 90\,\text{m} = 1.764 \times 10^{3}\,\text{J}\] | Gravitational potential energy gained to height \(h = 90\,\text{m}\). |
| 4 | \[\Delta KE = \tfrac{1}{2} m v_x^2 = \tfrac{1}{2} (2\,\text{kg}) (150\,\tfrac{\text{m}}{\text{s}})^2 = 2.25 \times 10^{4}\,\text{J}\] | Kinetic energy at the cut-off speed \(v_x = 150\,\tfrac{\text{m}}{\text{s}}\). |
| 5 | \[F_{\text{air}} \Delta x = F_T \Delta x – (\Delta PE + \Delta KE) = 2.475\times10^{4} – 2.4264\times10^{4} = 4.86\times10^{2}\,\text{J}\] | Isolate the work done by air resistance using the energy balance. |
| 6 | \[F_{\text{air}} = \frac{4.86\times10^{2}\,\text{J}}{90\,\text{m}} = 5.4\,\text{N}\] | Average air-resistance force is work divided by distance, acting opposite the motion. |
| 7 | \[\boxed{F_{\text{air}} = 5.4\,\text{N}}\] | Final average drag force magnitude during ascent. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
If a small motor does 520 J of work to move a toy car 260 meters in a time of 37 seconds.
A car accelerates uniformly from rest to [katex] 29.4 [/katex] m/s in [katex] 6.93 [/katex] s along a level stretch of road. Ignoring friction, determine the average power in both watts and horsepower ([katex] 1 \text{ horsepower} = 745.7 \text{ Watts} [/katex]) required to accelerate the car if:
An apple is released from rest \(500 \, \text{m}\) above the ground. Due to the combined forces of air resistance and gravity, it has a speed of \(40 \, \text{m/s}\) when it reaches the ground. What percentage of the initial mechanical energy of the apple–Earth system was dissipated due to air resistance? Take the potential energy of the apple–Earth system to be zero when the apple reaches the ground.
A typical \( 68 \)\(-\text{kg} \) person can maintain a steady energy expenditure of \( 480 \) \( \text{W} \) on a bicycle. Approximately how many Calories are “burned” when the person rides a bicycle for \( 15 \) minutes? A typical energy efficiency for the human body is \( 25\% \), which takes into account the release of thermal energy.
A mass \( m_1 \) traveling with an initial velocity \( v \) has an elastic collision with a mass \( m_2 \) that is initially at rest.
A 84.4 kg climber is scaling the vertical wall. His safety rope is made of a material that behaves like a spring that has a spring constant of 1.34 x 103 N/m. He accidentally slips and falls 0.627 m before the rope runs out of slack. How much is the rope stretched when it breaks his fall and momentarily brings him to rest?
A person holds a book at rest a few feet above a table. The person then lowers the book at a slow constant speed and places it on the table. Which of the following accurately describes the change in the total mechanical energy of the Earth–book system?
A bullet moving with an initial speed of \( v_o \) strikes and embeds itself in a block of wood which is suspended by a string, causing the bullet and block to rise to a maximum height \( h \). Which of the following statements is true of the collision.
A box of mass \(m\) is initially at rest at the top of a ramp that is at an angle \(\theta\) with the horizontal. The block is at a height \(h\) and length \(L\) from the bottom of the ramp. The coefficient of kinetic friction between the block and the ramp is \(\mu\). What is the kinetic energy of the box at the bottom of the ramp?
In a town’s water system, pressure gauges in still water at street level read \( 150 \) \( \text{kPa} \). If a pipeline connected to the system breaks and shoots water straight up, how high above the street does the water shoot?
\(5.4\,\text{N}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?