AP Physics

Unit 4 - Energy

Advanced

Mathematical

GQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 [katex] KE_{\text{peak}} = \frac{1}{2} m v^2 [/katex] Calculate the kinetic energy at the peak height. Kinetic energy (KE) is given by the equation [katex]\frac{1}{2} m v^2[/katex], where [katex]m[/katex] is mass (2 kg) and [katex]v[/katex] is velocity (150 m/s).
2 [katex] PE_{\text{peak}} = mgh [/katex] Calculate the potential energy at the peak height. Potential energy (PE) is given by [katex]mgh[/katex] where [katex]m[/katex] is mass (2 kg), [katex]g[/katex] is the acceleration due to gravity (approximately [katex]9.8 \, \text{m/s}^2[/katex]) and [katex]h[/katex] is the height (90 m).
3 [katex] W_{\text{thrust}} = F_{\text{thrust}} \times h [/katex] Calculate the work done by the thrust force. Work ([katex]W[/katex]) is force ([katex]F[/katex]) times the displacement ([katex]h[/katex]). Here, [katex]F_{\text{thrust}}[/katex] is 275 N.
4 [katex] KE_{\text{peak}} = \frac{1}{2} \times 2 \times 150^2 = 22500 \, \text{J} [/katex] Substitute the values to find [katex] KE_{\text{peak}} [/katex].
5 [katex] PE_{\text{peak}} = 2 \times 9.8 \times 90 = 1764 \, \text{J} [/katex] Substitute the values to find [katex] PE_{\text{peak}} [/katex].
6 [katex] W_{\text{thrust}} = 275 \times 90 = 24750 \, \text{J} [/katex] Substitute the values to find [katex] W_{\text{thrust}} [/katex].
7 [katex] W_{\text{thrust}} = KE_{\text{peak}} + PE_{\text{peak}} + W_{AR} [/katex] Use the conservation of energy. In this case the initial work done by the rocket thrust transforms into kinetic energy, potential energy, and work done by air resistance [katex] W_{AR} [/katex].
8 [katex] W_{AR} = 24750 – 22500 – 1764 [/katex] Solving for the work done by air resistance gives us [katex] W_{AR} = 486 \, \text{J} [/katex].
9 [katex] W_{AR} = Fh[/katex] Divide the work done by air resistance by the height to find the average air resistance force.
10 [katex] W_{AR} = \frac{486}{90} \approx 5.4 \, \text{N} [/katex] [katex] F_{\text{air}} \approx \boxed{5.4} \, \text{N} [/katex] is the average air resistance force acting against the rocket during ascent.

 

ALTERNATE EXPLANATION – Using Forces

Step Derivation/Formula Reasoning
1 [katex] F_{\text{net}} = ma [/katex] Newton’s second law states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration.
2 [katex] F_{\text{net}} = F_{\text{thrust}} – F_{\text{gravity}} – F_{\text{drag}} [/katex] The net force acting on the rocket includes the thrust force, the gravitational force, and the drag force (air resistance), where the thrust and drag act upwards, and gravity acts downwards.
3 [katex] F_{\text{gravity}} = mg [/katex] The gravitational force is calculated as the product of the mass and the acceleration due to gravity [katex] g \approx 9.81 \, \text{m/s}^2 [/katex].
4 [katex] F_{\text{gravity}} = 2 \, \text{kg} \times 9.81 \, \text{m/s}^2 = 19.62 \, \text{N} [/katex] Substitute the values of the mass and gravitational acceleration to find the gravitational force.
5 [katex] a = \frac{v^2 – v_0^2}{2h} [/katex] The kinematic equation relates the rocket’s change in velocity to acceleration and distance. Here, [katex] v_0 = 0 \, \text{m/s} [/katex] (initial velocity), [katex] v = 150 \, \text{m/s} [/katex] (final velocity at the peak), and [katex] h = 90 \, \text{m} [/katex] (height).
6 [katex] a = \frac{(150 \, \text{m/s})^2}{2 \times 90 \, \text{m}} [/katex] Substituting the values into the kinematic equation to calculate acceleration.
7 [katex] a = 125 \, \text{m/s}^2 [/katex] Calculation of the acceleration using the given values.
8 [katex] F_{\text{net}} = 2 \, \text{kg} \times 125 \, \text{m/s}^2 = 250 \, \text{N} [/katex] Calculate the net force acting on the rocket using Newton’s second law with the rocket’s mass and the acceleration.
9 [katex] 250 \, \text{N} = 275 \, \text{N} – 19.62 \, \text{N} – F_{\text{drag}} [/katex] Solve for the drag force using the equation in step 2.
10 [katex] F_{\text{drag}} = 275 \, \text{N} – 19.62 \, \text{N} – 250 \, \text{N} = 5.38 \, \text{N} [/katex] Substitute the values of the thrust, gravitational, and net forces to find the drag force.
11 [katex] F_{\text{drag}} \approx 5.38 \, \text{N} [/katex] This is the average air resistance force acting on the rocket during its ascent.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

[katex] F_{\text{air}} \approx 5.4 \, \text{N} [/katex]

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.