0 attempts
0% avg
UBQ Credits
# Part (a): Finding the final speed of the proton. Note you can also use conversation of energy to find the speed, where [katex] W_{\text{machine}} + KE_i = KE_f [/katex].
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] v_f^2 = v_i^2 + 2ad [/katex] | Use the kinematic equation that relates initial velocity, final velocity, acceleration, and distance traveled, where [katex] v_f [/katex] is the final velocity, [katex] v_i [/katex] is the initial velocity, [katex] a [/katex] is the acceleration, and [katex] d [/katex] is the distance. |
2 | [katex] v_f^2 = (2.4 \times 10^7 \, \text{m/s})^2 + 2 \times (3.6 \times 10^{15} \, \text{m/s}^2) \times (0.035 \, \text{m}) [/katex] | Substitute [katex] v_i = 2.4 \times 10^7 \, \text{m/s} [/katex], [katex] a = 3.6 \times 10^{15} \, \text{m/s}^2 [/katex], and [katex] d = 3.5 \, \text{cm} = 0.035 \, \text{m} [/katex]. |
3 | [katex] v_f = \sqrt{ (2.4 \times 10^7)^2 + 2 \times 3.6 \times 10^{15} \times 0.035} [/katex] | Simplify and solve for [katex] v_f [/katex]. |
4 | [katex] v_f = \sqrt{5.76 \times 10^{14} + 2.52 \times 10^{14}} [/katex] | Calculate inside the square root. |
5 | [katex] v_f = \sqrt{8.28 \times 10^{14}} [/katex] | Sum the terms under the square root. |
6 | [katex] v_f = 2.88 \times 10^7 \, \text{m/s} [/katex] | Take the square root to find the final speed. |
# Part (b): Calculating the increase in kinetic energy
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] \Delta KE =KE_f – KE_i [/katex] | The change in kinetic energy is the difference between the initial and final kinetic energy. |
2 | [katex] \Delta KE = \frac{1}{2} m (v_f^2 – v_i^2) [/katex] | Substitute in the formula for kinetic energy and factor out [katex] \frac{1}{2} m [/katex]. |
3 | [katex] \Delta KE = \frac{1}{2} (1.67 \times 10^{-27} \, \text{kg}) [(2.88 \times 10^7 \, \text{m/s})^2 – (2.4 \times 10^7 \, \text{m/s})^2] [/katex] | Substitute the values of [katex] m, v_f, v_i [/katex]. |
4 | [katex] \Delta KE = \frac{1}{2} \times 1.67 \times 10^{-27} \times 2.52 \times 10^{14} [/katex] | Simplify the expression. |
5 | [katex] \Delta KE = 2.10 \times 10^{-13} \, \text{J} [/katex] | Calculate the final change in kinetic energy, which is the increase in kinetic energy of the proton. |
# Part (c): Effect of tripling the acceleration on the increase in kinetic energy
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] W = \Delta KE [/katex] | Use the work energy pricinple, which states the work applied to the proton is equal to the change in its kinetic energy. |
2 | [katex] Fd = \Delta KE [/katex] | Substitute [katex] W [/katex] with [katex] Fd [/katex] since [katex] W = Fd [/katex]. |
3 | [katex] mad = \Delta KE [/katex] | Substitute [katex] F [/katex] with [katex] ma [/katex] since [katex] F = ma [/katex]. |
4 | [katex] md = \frac{\Delta KE}{a} [/katex] | Divide by acceleration on both sides. This equation clearly shows that [katex] \Delta KE [/katex] is directly proportional to [katex] a [/katex]. Hence tripling acceleration will also triple the the change in kinetic energy. |
Just ask: "Help me solve this problem."
If a small motor does 520 J of work to move a toy car 260 meters in a time of 37 seconds.
On a frictionless horizontal air table, puck A (with mass \( 0.249 \) \( \text{kg} \)) is moving toward puck B (with mass \( 0.375 \) \( \text{kg} \)), which is initially at rest. After the collision, puck A has velocity \( 0.115 \) \( \text{m/s} \) to the left, and puck B has velocity \( 0.645 \) \( \text{m/s} \) to the right.
A 0.5 kg cart, on a frictionless 2 m long table, is being pulled by a 0.1 kg mass connected by a string and hanging over a pulley. The system is released from rest. After the hanging mass falls 0.5 m, calculate the speed of the cart on the table. Use ONLY forces and energy.
A box of mass \(m\) is initially at rest at the top of a ramp that is at an angle \(\theta\) with the horizontal. The block is at a height \(h\) and length \(L\) from the bottom of the ramp. The coefficient of kinetic friction between the block and the ramp is \(\mu\). What is the kinetic energy of the box at the bottom of the ramp?
In the figure above, the marble rolls down the track and around a loop-the-loop of radius \( R \). The marble has mass \( m \) and radius \( r \). What minimum height \( h_{min} \) must the track have for the marble to make it around the loop-the-loop without falling off? Express your answer in terms of the variables \( R \) and \( r \).
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.