0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[T = 2\pi \sqrt{\frac{m}{k}}\] | Use the period formula for a mass–spring system, where \(T\) is the period, \(m\) the mass, and \(k\) the spring constant. |
2 | \[k = \frac{4\pi^2m}{T^2}\] | Solve for \(k\) by squaring the period equation and isolating \(k\). |
3 | \[k = \frac{4\pi^2 (5000)}{10^2} = \frac{4\pi^2 (5000)}{100} = 200\pi^2\] | Substitute \(m=5000\;\text{kg}\) and \(T=10\;\text{s}\) into the equation. |
4 | \[\boxed{k = 200\pi^2 \;\text{N/m}}\] | This is the final expression for the spring constant. |
Part (b): Equation of Motion
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[x(t) = A \cos(\omega t + \phi)\] | This is the standard form for simple harmonic motion, with amplitude \(A\), angular frequency \(\omega\), and phase \(\phi\). |
2 | \[A = 2,\quad \phi = 0\] | The elephant is pulled \(2\;\text{m}\) from equilibrium and released from rest, so the amplitude is \(2\;\text{m}\) and the initial phase is zero. |
3 | \[\omega = \frac{2\pi}{T} = \frac{2\pi}{10} = \frac{\pi}{5}\] | Calculate the angular frequency using the given period \(T=10\;\text{s}\). |
4 | \[x(t) = 2 \cos\Big(\frac{\pi}{5}t\Big)\] | Substitute \(A=2\), \(\omega=\pi/5\), and \(\phi=0\) into the standard equation. |
5 | \[\boxed{x(t) = 2 \cos\Big(\frac{\pi}{5}t\Big)}\] | This is the final equation of motion for the elephant on the spring. |
Part (c): Time to Travel from a Displacement of \(0.5\;\text{m}\) to \(1\;\text{m}\)
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[x(t) = 2 \cos\Big(\frac{\pi}{5}t\Big)\] | Recall the equation of motion from part (b). |
2 | \[2 \cos\Big(\frac{\pi}{5}t_1\Big) = 1\] | Set \(x(t_1)=1\;\text{m}\) to find the time \(t_1\) when the displacement is \(1\;\text{m}\). |
3 | \[\cos\Big(\frac{\pi}{5}t_1\Big) = \frac{1}{2}\] | Simplify the equation from step 2. |
4 | \[\frac{\pi}{5}t_1 = \cos^{-1}\Big(\frac{1}{2}\Big) = \frac{\pi}{3}\] | Use the inverse cosine; note that \(\cos^{-1}(1/2) = \pi/3\) within the relevant interval. |
5 | \[t_1 = \frac{5}{\pi}\cdot \frac{\pi}{3} = \frac{5}{3}\] | Solve for \(t_1\) by isolating it. |
6 | \[2 \cos\Big(\frac{\pi}{5}t_2\Big) = 0.5\] | Set \(x(t_2)=0.5\;\text{m}\) to determine the time \(t_2\) when the displacement is \(0.5\;\text{m}\). |
7 | \[\cos\Big(\frac{\pi}{5}t_2\Big) = 0.25\] | Simplify the equation from step 6. |
8 | \[\frac{\pi}{5}t_2 = \cos^{-1}(0.25)\] | Express \(t_2\) in terms of the inverse cosine. |
9 | \[t_2 = \frac{5}{\pi}\cos^{-1}(0.25)\] | Solve for \(t_2\) by isolating it. |
10 | \[\Delta t = \Big|t_2 – t_1\Big| = \frac{5}{\pi}\Big|\cos^{-1}(0.25) – \frac{\pi}{3}\Big|\] | The time interval required to travel between the two displacements is the difference between \(t_2\) and \(t_1\). The absolute value ensures a positive time difference regardless of the order of passage. |
11 | \[\boxed{\Delta t = \frac{5}{\pi}\Big(\cos^{-1}(0.25) – \frac{\pi}{3}\Big) \approx 0.43\;\text{s}}\] | This is the final expression and its approximate numerical value for the time interval. |
Just ask: "Help me solve this problem."
An object in simple harmonic motion obeys the following position versus time equation: \( y = (0.50 \text{ m}) \sin \left( \frac{\pi}{2} t \right) \). What is the amplitude of vibration?
On Earth, a simple pendulum of length \( 1.2 \) meters, mass of \( 3 \) kg, and amplitude of \( 10 \) degrees oscillates back and forth. Calculate:
A \(81 \, \text{kg}\) student dives off a \(45 \, \text{m}\) tall bridge with an \(18 \, \text{m}\) long bungee cord tied to his feet and to the bridge. You can consider the bungee cord to be a flexible spring. What spring constant must the bungee cord have for the student’s lowest point to be \(2.0 \, \text{m}\) above the water?
A block of mass \( m \) is attached to a horizontal spring with spring constant \( k \) and undergoes simple harmonic motion with amplitude \( A \) along the \( x \)-axis. Which of the following equations could represent the position \( x \) of the object as a function of time?
A 10 meter long pendulum on the earth, is set into motion by releasing it from a maximum angle of less than 10° relative to the vertical. At what time [katex]t[/katex] will the pendulum have fallen to a perfectly vertical orientation?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?