0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( p_{x} = m_{1} v_{i} = 1000 \;\text{kg}\times20\;\text{m/s} = 20000 \;\text{kg}\cdot\text{m/s} \) | This is the momentum in the east (\(x\)) direction for the first car. |
2 | \( p_{y} = m_{2} v_{i} = 2000 \;\text{kg}\times15\;\text{m/s} = 30000 \;\text{kg}\cdot\text{m/s} \) | This is the momentum in the north (\(y\)) direction for the second car. |
3 | \( p = \sqrt{p_{x}^{2}+p_{y}^{2}} = \sqrt{20000^{2}+30000^{2}} = \sqrt{400\times10^{6}+900\times10^{6}} = \sqrt{1300\times10^{6}} \) | This computes the magnitude of the total momentum after the collision. |
4 | \( m_{\text{total}} = m_{1} + m_{2} = 1000 \;\text{kg} + 2000 \;\text{kg} = 3000 \;\text{kg} \) | This is the combined mass of the two cars after the collision. |
5 | \( v_{i} = \frac{p}{m_{\text{total}}} = \frac{\sqrt{1300\times10^{6}}}{3000} = \frac{1000\sqrt{1300}}{3000} = \frac{\sqrt{1300}}{3} \;\text{m/s} \) | This gives the speed immediately after the collision (the initial speed for the skid), where \(v_{i}\) is used consistently. |
6 | \( \theta = \tan^{-1}\left(\frac{p_{y}}{p_{x}}\right) = \tan^{-1}\left(\frac{30000}{20000}\right) = \tan^{-1}(1.5) \) | This determines the direction of the combined velocity relative to east. (Numerically, \(\tan^{-1}(1.5)\) is approximately \(56.3^\circ\) north of east.) |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \( a = \mu_{k}g = 0.9\times9.8 = 8.82 \;\text{m/s}^{2} \) | This calculates the deceleration due to kinetic friction acting on the combined cars. |
2 | \( \Delta x = \frac{v_{i}^{2}}{2a} = \frac{\left(\frac{\sqrt{1300}}{3}\right)^{2}}{2\times0.9\times9.8} = \frac{\frac{1300}{9}}{17.64} \) | We use the kinematic relation for stopping distance when the final velocity is \(v_{x}=0\); here, \(\Delta x\) is the skid distance. |
3 | \( \Delta x = \frac{1300}{9\times17.64} \approx 8.19 \;\text{m} \) | This is the calculated skid distance after substituting the numerical values. |
4 | \( \boxed{\Delta x \approx 8.19 \;\text{m} \quad\text{and}\quad \theta \approx 56.3^\circ \;\text{north of east}} \) | This row presents the final answers: the cars skid approximately \(8.19\) meters in a direction approximately \(56.3^\circ\) north of east. |
Just ask: "Help me solve this problem."
From the figure above, determine which characteristic fits this collision best.
A rock is dropped from a sea cliff, and the sound of it striking the ocean is heard \( 3.4 \) \( \text{s} \) later. If the speed of sound is \( 340 \) \( \text{m/s} \), how high is the cliff?
Which of the following statements about the acceleration due to gravity is TRUE?
A 0.10-kg ball, traveling horizontally at 25 m/s, strikes a wall and rebounds at 19 m/s. What is the magnitude of the change in the momentum of the ball during the rebound?
A kangaroo jumps straight up to a vertical height of \( 1.45 \) \( \text{m} \). How long was it in the air before returning to Earth?
\(\Delta x \approx 8.19 \;\text{m}\) and \(\theta \approx 56.3^\circ\;\text{north of east}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?