0 attempts
0% avg
UBQ Credits
# Part (a): Solving Using Conservation of Energy
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] U_i + K_i = U_f + K_f [/katex] | The total mechanical energy (kinetic + potential) at the initial state equals the total mechanical energy at the final state due to conservation of energy. |
2 | [katex] U_i = m_g \cdot g \cdot h [/katex] | Initial potential energy is due to [katex] m_g [/katex] being at a height [katex] h [/katex] from the ground. [katex] m_y [/katex] is on the ground, so its potential energy is zero. |
3 | [katex] U_i = 38 \, \text{kg} \cdot 9.8 \, \text{m/s}^2 \cdot 2.5 \, \text{m} [/katex] | Calculate the numerical value of [katex] U_i [/katex]. [katex] g [/katex] (acceleration due to gravity) is 9.8 m/s² and [katex] h [/katex] is 2.5 m. |
4 | [katex] U_i = 931 \, \text{J} [/katex] | Multiplying the values provides the initial potential energy. |
5 | [katex] K_i = 0 [/katex] | Initially, the system is at rest so the initial kinetic energy is zero. |
6 | [katex] K_f = \frac{1}{2}(m_y + m_g + m_p) v^2 [/katex] | Final kinetic energy calculated as the sum of the kinetic energies of [katex] m_g [/katex], [katex] m_y [/katex] and the pulley. [katex] m_p [/katex] is the mass of the pulley. The pulley contributes translational kinetic energy due to its mass. |
7 | [katex] U_f = 0 [/katex] | At the final state, [katex] m_g [/katex] is on the ground, so its potential energy is zero. |
8 | [katex] 931 \, \text{J} = \frac{1}{2} (32 \, \text{kg} + 38 \, \text{kg} + 3.1 \, \text{kg}) v^2 [/katex] | Use [katex] U_i + K_i = U_f + K_f [/katex] and solve for [katex] v [/katex]. |
9 | [katex] v = \sqrt{\frac{2 \times 931 \, \text{J}}{73.1 \, \text{kg}}} [/katex] | Simplify the equation to solve for [katex] v [/katex]. |
10 | [katex] v = \sqrt{25.48 \, \text{m}^2/\text{s}^2} [/katex] | Calculate the value under the square root. |
11 | [katex] v = 5.05 \, \text{m/s} [/katex] | The final velocity of [katex] m_g [/katex] just before it strikes the ground. |
# Part (b): Solving Using Forces, Torque, and Kinematics
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] F = m \cdot a [/katex] | Newton’s second law, the net force applied on the system causes acceleration. |
2 | [katex] F_{my} – F_{mg} = (m_y + m_g + m_p) \cdot a [/katex] | Forces due to weights of [katex] m_y [/katex] and [katex] m_g [/katex], including the pulley’s inertia, where [katex] F_{my} = m_y \cdot g [/katex] and [katex] F_{mg} = m_g \cdot g [/katex]. |
3 | [katex] T = \frac{m_g g – m_y g}{1 + \frac{m_p}{m_y + m_g}} [/katex] | Balance the forces taking into account the pulley rotation effect, where [katex] T [/katex] is the net torque and [katex] m_p [/katex] is moment of inertia derived as [katex] \frac{1}{2} m_p R^2 [/katex] assuming a uniform cylinder. |
4 | [katex] a = \frac{m_g g – m_y g}{m_y + m_g + \frac{1}{2} m_p} [/katex] | Solving the earlier equation for [katex] a [/katex], the acceleration of the system, where [katex] \frac{1}{2} m_p [/katex] comes from dividing the pulley’s moment of inertia by [katex] R^2 [/katex]. |
5 | [katex] v_f^2 = 2 \cdot a \cdot 2.5 \, \text{m} [/katex] | Use kinematic equation for final velocity, incorporating the calculated acceleration and distance fallen, which is 2.5 m. |
6 | [katex] v_f = \sqrt{2 \cdot a \cdot 2.5 \, \text{m}} [/katex] | Solve for final velocity using the value for [katex] a [/katex]. |
7 | Approximate numerical calculation similar to Part (a) | The velocity is essentially the same result as obtained from energy conservation, demonstrating the physics consistency. |
Just ask: "Help me solve this problem."
Two uniform solid balls, one of radius R and mass M, the other of radius 2R and mass 8M, roll down a high incline. They start together from rest at the top of the incline. Which one will reach the bottom of the incline first?
A rotating, rigid body makes 10 complete revolutions in 10 seconds. What is its average angular velocity?
The system in the Figure is in equilibrium. A concrete block of mass 225 kg hangs from the end of a uniform strut whose mass is 45.0 kg.
A seesaw is balanced on a fulcrum, with a boy of mass [katex] M_1 [/katex] sitting on one end and a girl of mass [katex] M_2 [/katex] sitting on the other end. The seesaw is a uniform plank of length [katex]L[/katex] and mass [katex] M[/katex]. The fulcrum is located at the midpoint of the plank. Does [katex] M_1 = M_2 [/katex]. Justify your working.
A 150-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope.
What constant force must be exerted on the rope to bring the merry-go-round from rest to an angular speed of 0.500 rev/s in 2.00 s?
Note: [katex] I_\text{disk} = \frac{1}{2}mr^2 [/katex]
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.