0 attempts
0% avg
UBQ Credits
# Part (a): At what time does the motor reverse direction?
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]\omega = 20 – \frac{1}{2}t^2[/katex] | Given the angular velocity of the electric motor as a function of time. |
2 | [katex]\omega = 0[/katex] | To find the time when the motor reverses direction, set the angular velocity [katex]\omega[/katex] equal to zero. |
3 | [katex]0 = 20 – \frac{1}{2}t^2[/katex] | Substitute [katex]\omega = 0[/katex] into the given angular velocity equation. |
4 | [katex]\frac{1}{2}t^2 = 20 [/katex] | Rearrange the equation to solve for [katex]t^2[/katex]. |
5 | [katex]t^2 = 40[/katex] | Multiply both sides by 2 to isolate [katex]t^2[/katex]. |
6 | [katex]t = \sqrt{40}[/katex] | Solve for [katex]t[/katex] by taking the square root of both sides. Include only the positive root because time cannot be negative. |
7 | [katex]t = \boxed{6.32 \, \text{s}}[/katex] | Final answer: The motor reverses direction at [katex] t = 6.32 \, \text{s} [/katex]. |
# Part (b): Through what angle does the motor turn between [katex]t=0 \, \text{s}[/katex] and [katex]t=8 \, \text{s}[/katex]?
Note – If you haven’t learned calculus yet, plot the given \( \omega\) v \(t\) equation. Then approximate the area bound by the line and the x axis, up to the 8 second mark. This area represents the angular displacement of the motor.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]\theta = \int_0^t \omega \, dt[/katex] | The angle [katex]\theta[/katex] through which the motor turns is the integral of angular velocity over time. |
2 | [katex]\theta = \int_0^8 \left(20 – \frac{1}{2} t^2 \right) dt [/katex] | Substitute the given angular velocity expression into the integral and set the limits from [katex] t = 0 \, \text{s} [/katex] to [katex] t = 8 \, \text{s} [/katex]. |
3 | [katex]\theta = \left[ 20t – \frac{1}{2} \cdot \frac{t^3}{3} \right]_0^8[/katex] | Integrate the expression term by term: [katex]\int 20 \, dt = 20t[/katex] and [katex]\int -\frac{1}{2}t^2 \, dt = -\frac{1}{2} \cdot \frac{t^3}{3}[/katex]. |
4 | [katex]\theta = \left[ 20t – \frac{t^3}{6} \right]_0^8 [/katex] | Simplify the integrated expression. |
5 | [katex]\theta = \left( 20 \times 8 – \frac{8^3}{6}\right) – \left( 20 \times 0 – \frac{0^3}{6} \right)[/katex] | Evaluate the expression at the limits: [katex] t = 8 \, \text{s} [/katex] and [katex] t = 0 \, \text{s} [/katex]. |
6 | [katex]\theta = \left( 160 – \frac{512}{6} \right) – 0[/katex] | Simplify and calculate the values. |
7 | [katex]\theta = 160 – 85.33[/katex] | Subtract the second term from the first term to find the angle. |
8 | [katex]\theta = \boxed{74.67 \, \text{rad}}[/katex] | The motor turns through an angle of [katex] 74.67 \, \text{rad} [/katex] between [katex] t = 0 \, \text{s} [/katex] and [katex] t = 8 \, \text{s} [/katex]. |
Just ask: "Help me solve this problem."
An object is experiencing a nonzero net force. Which of the following statements is most accurate?
A hoop with a mass [katex]m[/katex] and unknown radius is rolling without slipping on a flat surface with an angular speed [katex]\omega[/katex]. The hoop encounters a hill and continues to roll without slipping until it reaches a maximum height [katex]h[/katex].
The rotating systems, shown in the figure above, differ only in that the two identical movable masses are positioned a distance r from the axis of rotation (left), or a distance r/2 from the axis of rotation (right). What happens if you release the hanging blocks simultaneously from rest?
A disk of radius 35 cm rotates at a constant angular velocity of 10 rad/s. How fast does a point on the rim of the disk travel (in m/s)?
Consider a rigid body that is rotating. Which of the following is an accurate statement?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.