0 attempts
0% avg
UBQ Credits
# Part (a): Angular acceleration at [katex] t = 4.0 \, \text{s} [/katex]
Note – To solve without calculus, graph the given function. The slope of this angular velocity v. time graph is acceleration. Therefore, approximate the slope at 4 seconds to find angular acceleration.
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex]\omega = 20 – \frac{1}{2} t^2 \, \text{rad/s} [/katex] | Given expression for the angular velocity of the gear as a function of time. |
| 2 | [katex]\alpha = \frac{d\omega}{dt} [/katex] | Angular acceleration is the rate of change of angular velocity with respect to time. |
| 3 | [katex]\alpha = \frac{d}{dt} \left( 20 – \frac{1}{2} t^2 \right) = – t \, \text{rad/s}^2 [/katex] | Differentiate the given expression for [katex]\omega[/katex] with respect to [katex]t[/katex]. |
| 4 | [katex]\alpha(t=4) = -4 \, \text{rad/s}^2 [/katex] | Substitute [katex]t = 4.0 \, \text{s}[/katex] to find the angular acceleration at that instant. |
| 5 | [katex]\boxed{-4 \, \text{rad/s}^2} [/katex] | Final boxed numerical answer for the angular acceleration at [katex]t = 4 \, \text{s}[/katex]. |
# Part (b): Tangential acceleration of a tooth on the gear at [katex] t = 4.0 \, \text{s} [/katex]
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex]a_t = \alpha \cdot r[/katex] | Tangential acceleration is the product of the angular acceleration and the radius of the gear. |
| 2 | [katex]r = \frac{d}{2} = \frac{6.0 \, \text{cm}}{2} = 3.0 \, \text{cm} = 0.03 \, \text{m}[/katex] | Calculate the radius of the gear from the given diameter (convert cm to m). |
| 3 | [katex]a_t = -4 \, \text{rad/s}^2 \times 0.03 \, \text{m} = -0.12 \, \text{m/s}^2[/katex] | Use the angular acceleration found in part (a) and the radius to determine the tangential acceleration. |
| 4 | [katex]\boxed{-0.12 \, \text{m/s}^2}[/katex] | Final boxed numerical answer for the tangential acceleration of a tooth on the gear at [katex]t = 4 \, \text{s}[/katex]. |
Just ask: "Help me solve this problem."
A solid ball of mass \( M \) and radius \( R \) has rotational inertia \( \frac{2}{5} M R^{2} \) about its center. It rolls without slipping along a level surface at speed \( v \) just before it begins rolling up an inclined plane. Which of the following expressions correctly represents the maximum vertical height the solid ball can ascend to when it rolls up the incline without slipping?
A windmill blade with a rotational inertia of \( 6.0 \) \( \text{kg} \cdot \text{m}^2 \) has an initial angular velocity of \( 8 \) \( \text{rad/s} \) in the clockwise direction. It is then given an angular acceleration of \( 4 \) \( \text{rad/s}^2 \) in the clockwise direction for \( 10 \) seconds. What is the change in rotational kinetic energy of the blade over this time interval?
A spinning ice skater on extremely smooth ice is able to control the rate at which she rotates by pulling in her arms. Which of the following statements are true about the skater during this process?
A person’s center of mass is easily found by having the person lie on a reaction board. A horizontal, \( 2.3 \) \( \text{m} \)-long, \( 6.1 \) \( \text{kg} \) reaction board is supported only at the ends, with one end resting on a scale and the other on a pivot. A \( 64 \) \( \text{kg} \) woman lies on the reaction board with her feet over the pivot. The scale reads \( 27 \) \( \text{kg} \). What is the distance from the woman’s feet to her center of mass? Express your answer with the appropriate units.
A boy and a girl are balanced on a massless seesaw. The boy has a mass of \(60 \, \text{kg}\) and the girl’s mass is \(50 \, \text{kg}\). If the boy sits \(1.5 \, \text{m}\) from the pivot point on one side of the seesaw, where must the girl sit on the other side for equilibrium?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?