0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]m_1 = 1.0 \, \text{kg}, \, v_{i1} = 2 \, \text{m/s}[/katex] | Identify the mass and initial velocity of the clay lump. |
2 | [katex]m_2 = 0.5 \, \text{kg}, \, v_{i2} = -4 \, \text{m/s}[/katex] | Identify the mass and initial velocity of the metal sphere. The negative sign indicates it is moving in the opposite direction. |
3 | [katex]v_{\text{f}} = \frac{m_1 v_{i1} + m_2 v_{i2}}{m_1 + m_2}[/katex] | Using conservation of momentum to find the final velocity after collision. Here [katex]m_1[/katex] and [katex]m_2[/katex] are the masses, [katex]v_{i1}[/katex] and [katex]v_{i2}[/katex] are the initial velocities, and [katex]v_{\text{f}}[/katex] is the final velocity. |
4 | [katex]v_{\text{f}} = \frac{(1.0 \, \text{kg})(2 \, \text{m/s}) + (0.5 \, \text{kg})(-4 \, \text{m/s})}{1.0 \, \text{kg} + 0.5 \, \text{kg}}[/katex] | Substitute the given values into the equation. |
5 | [katex]v_{\text{f}} = \frac{2 – 2}{1.5} \, \text{m/s} = 0[/katex] | Calculate the final velocity. The combined mass system comes to rest because the momentum contributions cancel each other out. |
6 | [katex]KE_{\text{combined}} = \frac{1}{2} (m_1 + m_2) v_{\text{f}}^2[/katex] | Calculate the kinetic energy of the combined objects after the collision. [katex]KE[/katex] is kinetic energy, [katex]m_1[/katex] and [katex]m_2[/katex] are the masses, and [katex]v_{\text{f}}[/katex] is the final velocity. |
7 | [katex]KE_{\text{combined}} = \frac{1}{2} (1.0 \, \text{kg} + 0.5 \, \text{kg}) (0)^2 = 0 \, \text{J}[/katex] | Substitute the values and solve. Since the final velocity is zero, the kinetic energy is also zero. |
8 | (d) \( 0 \, \text{J} \) | The kinetic energy of the combined objects after collision is zero, indicating that the system is at rest. |
# Explanation for Incorrect Answers:
Option | Reason |
---|---|
(a) 6 J | Incorrect because it does not consider the direction and combination of velocities properly in the conservation of momentum. |
(b) 4 J | Incorrect as it assumes kinetic energy without correctly solving for [katex]v_{\text{f}}[/katex]. |
(c) 2 J | Incorrect because it disregards that combined velocity is 0 after applying conservation of momentum. |
Just ask: "Help me solve this problem."
On a frictionless horizontal air table, puck A (with mass \( 0.249 \) \( \text{kg} \)) is moving toward puck B (with mass \( 0.375 \) \( \text{kg} \)), which is initially at rest. After the collision, puck A has velocity \( 0.115 \) \( \text{m/s} \) to the left, and puck B has velocity \( 0.645 \) \( \text{m/s} \) to the right.
A small block of mass \( M \) is released from rest at the top of the curved frictionless ramp shown above. The block slides down the ramp and is moving with a speed \( 3.5v_0 \) when it collides with a larger block of mass \( 1.5M \) at rest at the bottom of the incline. The larger block moves to the right at a speed \( 2v_0 \) immediately after the collision.
Express your answers to the following questions in terms of the given quantities and fundamental constants.
A 0.5 kg cart, on a frictionless 2 m long table, is being pulled by a 0.1 kg mass connected by a string and hanging over a pulley. The system is released from rest. After the hanging mass falls 0.5 m, calculate the speed of the cart on the table. Use ONLY forces and energy.
A box of mass \(m\) is initially at rest at the top of a ramp that is at an angle \(\theta\) with the horizontal. The block is at a height \(h\) and length \(L\) from the bottom of the ramp. The coefficient of kinetic friction between the block and the ramp is \(\mu\). What is the kinetic energy of the box at the bottom of the ramp?
Water balloons are tossed from the roof of a building, all with the same speed but with different launch angles. Which one has the highest speed when it hits the ground? Ignore air resistance. Without using equations, explain your answer.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?