0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]m_1 = 1.0 \, \text{kg}, \, v_{i1} = 2 \, \text{m/s}[/katex] | Identify the mass and initial velocity of the clay lump. |
2 | [katex]m_2 = 0.5 \, \text{kg}, \, v_{i2} = -4 \, \text{m/s}[/katex] | Identify the mass and initial velocity of the metal sphere. The negative sign indicates it is moving in the opposite direction. |
3 | [katex]v_{\text{f}} = \frac{m_1 v_{i1} + m_2 v_{i2}}{m_1 + m_2}[/katex] | Using conservation of momentum to find the final velocity after collision. Here [katex]m_1[/katex] and [katex]m_2[/katex] are the masses, [katex]v_{i1}[/katex] and [katex]v_{i2}[/katex] are the initial velocities, and [katex]v_{\text{f}}[/katex] is the final velocity. |
4 | [katex]v_{\text{f}} = \frac{(1.0 \, \text{kg})(2 \, \text{m/s}) + (0.5 \, \text{kg})(-4 \, \text{m/s})}{1.0 \, \text{kg} + 0.5 \, \text{kg}}[/katex] | Substitute the given values into the equation. |
5 | [katex]v_{\text{f}} = \frac{2 – 2}{1.5} \, \text{m/s} = 0[/katex] | Calculate the final velocity. The combined mass system comes to rest because the momentum contributions cancel each other out. |
6 | [katex]KE_{\text{combined}} = \frac{1}{2} (m_1 + m_2) v_{\text{f}}^2[/katex] | Calculate the kinetic energy of the combined objects after the collision. [katex]KE[/katex] is kinetic energy, [katex]m_1[/katex] and [katex]m_2[/katex] are the masses, and [katex]v_{\text{f}}[/katex] is the final velocity. |
7 | [katex]KE_{\text{combined}} = \frac{1}{2} (1.0 \, \text{kg} + 0.5 \, \text{kg}) (0)^2 = 0 \, \text{J}[/katex] | Substitute the values and solve. Since the final velocity is zero, the kinetic energy is also zero. |
8 | (d) \( 0 \, \text{J} \) | The kinetic energy of the combined objects after collision is zero, indicating that the system is at rest. |
# Explanation for Incorrect Answers:
Option | Reason |
---|---|
(a) 6 J | Incorrect because it does not consider the direction and combination of velocities properly in the conservation of momentum. |
(b) 4 J | Incorrect as it assumes kinetic energy without correctly solving for [katex]v_{\text{f}}[/katex]. |
(c) 2 J | Incorrect because it disregards that combined velocity is 0 after applying conservation of momentum. |
Just ask: "Help me solve this problem."
A 2 kg model rocket is launched with a thrust force of 275 N and reaches a height of 90 m, moving at 150 m/s at its peak. What is the average air resistance force acting on the rocket during its ascent?
A 6 kg cube rests against a compressed spring with a force constant of 1,800 N/m, initially compressed by 0.3 m. Upon release, the cube slides on a horizontal surface with a kinetic friction coefficient of 0.12 for 3 m, then ascends a 12° slope, stopping after 4.5 m. Determine the coefficient of kinetic friction on the slope.
A \( 0.20 \) \( \text{kg} \) object moves along a straight line. The net force acting on the object varies with the object’s displacement as shown in the graph above. The object starts from rest at displacement \( x = 0 \) and time \( t = 0 \) and is displaced a distance of \( 20 \) \( \text{m} \). Determine each of the following.
A bullet moving with an initial speed of [katex] v_o [/katex] strikes and embeds itself in a block of wood which is suspended by a string, causing the bullet and block to rise to a maximum height [katex] h [/katex]. Which of the following statements is true of the collision.
It takes 4 seconds for an individual to push a 70 kg box up a 5m long, 12° ramp. The box starts from rest and achieves a speed of 2.5 m/s at the top. Friction does 350 J of work during its ascent. Calculate the power output of the individual pushing the box.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.