0 attempts
0% avg
UBQ Credits
# (a) Actual Velocity of the Sled
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] v_x = 78.0 \, \text{m/s} [/katex] | Given velocity of Santa flying west. |
2 | [katex] v_y = 20.3 \, \text{m/s} [/katex] | Given velocity of the wind blowing south. |
3 | [katex] v = \sqrt{v_x^2 + v_y^2} [/katex] | Use Pythagorean theorem to determine the magnitude of the resultant velocity. |
4 | [katex] v = \sqrt{(78.0 \, \text{m/s})^2 + (20.3 \, \text{m/s})^2} [/katex] | Substitute the values of [katex] v_x [/katex] and [katex] v_y [/katex]. |
5 | [katex] v = \sqrt{6084 + 412.09} [/katex] | Calculate the squares of [katex] v_x [/katex] and [katex] v_y [/katex]. |
6 | [katex] v = \sqrt{6496.09} [/katex] | Add the results under the square root. |
7 | [katex] v \approx 80.6 \, \text{m/s} [/katex] | Take the square root to find the magnitude of the actual velocity. |
8 | [katex] \theta = \tan^{-1}\left(\frac{v_y}{v_x}\right) [/katex] | To find the direction of the resultant velocity, use the tangent inverse function. |
9 | [katex] \theta = \tan^{-1}\left(\frac{20.3 \, \text{m/s}}{78.0 \, \text{m/s}}\right) [/katex] | Substitute the values of [katex] v_y [/katex] and [katex] v_x [/katex] into the equation. |
10 | [katex] \theta \approx 14.7^\circ [/katex] | Calculate the angle, which is the angle south of west. |
Result: The actual velocity of Santa’s sled is [katex] \boxed{80.6 \, \text{m/s} \, \text{at} \, 14.7^\circ \, \text{south of west}} [/katex].
# (b) Adjusted Angle for Traveling West
Since the wind pushes Santa \(14.7^\circ\) south of west, he must compensate by adjusting his flight direction to \(14.7^\circ\) north of west. By traveling at this angle, the upward (northward) component of his path will counteract the downward (southward) component caused by the wind. As a result, the opposing vertical forces cancel each other out, allowing Santa to fly in a straight line directly towards the west.
Just ask: "Help me solve this problem."
You are adding vectors of length \( 20 \) and \( 40 \) units. Which of the following choices is a possible resultant magnitude?
What does displacement mean in the context of motion?
When we refer to an object’s speed, we’re talking about:
Gregory was walking through the halls of the school when he realized that he was walking in perpendicular directions and he could easily calculate his displacement using the incredibly useful techniques he learned in physics. He recognized that he walked \(12.5\ \text{m}\) left and then \(18.9\ \text{m}\) down. How far must he walk to the right so that his resultant displacement is \(20.1\ \text{m}\)?
Determine the sum of the three vectors given below. Calculate the resultant \( \vec{R} \) expressed as:
(a) Vector components
(b) Resultant vector (its total magnitude and direction)
\[\vec{A} = 26.5 \, \text{m} \ @ \ 56^\circ \, \text{NW}\]
\[\vec{B} = 44 \, \text{m} \ @ \ 28^\circ \, \text{NE}\]
\[\vec{C} = 31 \, \text{m} \, \text{South}\]
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We created THE ultimate A.P Physics 1 course by simplifying everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.