0 attempts
0% avg
UBQ Credits
Part (a): Minimum coefficient
| Derivation/Formula | Reasoning |
|---|---|
| \[x_2 = \tfrac{L}{2}\cos\theta,\quad x_1 = d\cos\theta,\quad y_{\text{top}} = L\sin\theta\] | Set geometry: horizontal lever arms to the weights are \( \tfrac{L}{2}\cos\theta \) for the ladder’s center (mass \( m_2 \)) and \( d\cos\theta \) for the person (mass \( m_1 \)); the top contact is at height \( L\sin\theta \). |
| \[N_1(L\sin\theta) – m_2 g\left(\tfrac{L}{2}\cos\theta\right) – m_1 g(d\cos\theta) = 0\] | Torque about the bottom with \( \)counterclockwise positive: wall normal \( N_1 \) gives a positive moment \( N_1(L\sin\theta) \); weights \( m_2 g \) and \( m_1 g \) at offsets \( \tfrac{L}{2}\cos\theta \) and \( d\cos\theta \) give clockwise (negative) moments. |
| \[N_1 = \frac{g\cos\theta\left(\tfrac{m_2 L}{2} + m_1 d\right)}{L\sin\theta}\] | Solve the torque equation algebraically for \( N_1 \). |
| \[f – N_1 = 0\] | Horizontal force balance: the floor friction \( f \) (to the right) balances the wall’s leftward normal \( N_1 \), so \( f = N_1 \). |
| \[N_2 – (m_1 + m_2)g = 0\] | Vertical force balance: the ground normal \( N_2 \) supports the total weight \( (m_1+m_2)g \). |
| \[f = \mu_{\min} N_2\] | Impending slip condition at the threshold of motion defines \( \mu_{\min} \) via \( f = \mu_{\min} N_2 \). With \( f = N_1 \), one has \( \mu_{\min} = \tfrac{N_1}{N_2} \). |
| \[\mu_{\min} = \frac{\left(\tfrac{m_2 L}{2} + m_1 d\right)\cos\theta}{(m_1+m_2)L\sin\theta}\] | Substitute \( N_1 = \tfrac{g\cos\theta\left(\tfrac{m_2 L}{2} + m_1 d\right)}{L\sin\theta} \) and \( N_2 = (m_1+m_2)g \); the \( g \) cancels, yielding the simplified ratio. |
| \[\boxed{\mu_{\min} = \frac{\left(\tfrac{m_2 L}{2} + m_1 d\right)\cos\theta}{(m_1+m_2)L\sin\theta}}\] | Final expression for the minimum coefficient ensuring no slip. |
Part (b): Friction magnitude
| Derivation/Formula | Reasoning |
|---|---|
| \[\mu_s = \tfrac{3}{2}\,\mu_{\min}\] | Given that the available static friction coefficient \( \mu_s \) exceeds the minimum \( \mu_{\min} \) by a factor of \( \tfrac{3}{2} \). |
| \[f = N_1\] | In static equilibrium, the actual friction adjusts to balance horizontal forces; thus \( f \) equals the wall normal \( N_1 \), not \( \mu_s N_2 \) unless at the threshold. |
| \[N_1 = \frac{g\cos\theta\left(\tfrac{m_2 L}{2} + m_1 d\right)}{L\sin\theta}\] | Use the same torque result from part (a); it does not depend on \( \mu_s \). |
| \[\boxed{f = \frac{g\cos\theta\left(\tfrac{m_2 L}{2} + m_1 d\right)}{L\sin\theta}}\] | Substitute to obtain the friction magnitude; since \( \mu_s > \mu_{\min} \), this satisfies \( f \le \mu_s N_2 \) with margin. |
Just ask: "Help me solve this problem."
Consider a rigid body that is rotating. Which of the following is an accurate statement?
A construction worker spins a square sheet of metal of mass 0.040 kg with an angular acceleration of 10.0 rad/s2 on a vertical spindle (pin). What are the dimensions of the sheet if the net torque on the sheet is 1.00 N·m? Assume that the moment of inertia of a rectangle is [katex] I = \frac{1}{12}M(a^2+b^2) [/katex]

A point on the edge of a disk rotates around the center of the disk with an initial angular velocity of 3 rad/s clockwise. The graph shows the point’s angular acceleration as a function of time. The positive direction is considered to be counterclockwise. All frictional forces are considered to be negligible.
Two uniform solid balls, one of radius \( R \) and mass \( M \), the other of radius \( 2R \) and mass \( 8M \), roll down a high incline. They start together from rest at the top of the incline. Which one will reach the bottom of the incline first?
Consider a uniform hoop of radius R and mass M rolling without slipping. Which is larger, its translational kinetic energy or its rotational kinetic energy?
\(\mu_{\min} = \frac{\left(\tfrac{m_2 L}{2} + m_1 d\right)\cos\theta}{(m_1+m_2)L\sin\theta}\)
\(f = \frac{g\cos\theta\left(\tfrac{m_2 L}{2} + m_1 d\right)}{L\sin\theta}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?