0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(\Delta x = 120 \, \text{m}\) | Given that the target is 120 meters away. |
2 | \(v_i = 200 \, \text{m/s}\) | Given that the initial velocity is 200 meters per second. |
3 | \(t = \frac{\Delta x}{v_i}\) | Since the bullet is fired horizontally, time can be found using the formula \( t = \frac{\Delta x}{v} \). |
4 | \(t = \frac{120 \, \text{m}}{200 \, \text{m/s}} = 0.6 \, \text{s}\) | Substitute the given values to find the time it takes for the bullet to reach the target. |
5 | \(h = \frac{1}{2} g t^2\) | Use the equation for vertical displacement under gravity where \( g \) is the acceleration due to gravity ( \( 9.8 \, \text{m/s}^2 \) ). |
6 | \(h = \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times (0.6 \, \text{s})^2 = \frac{1}{2} \times 9.8 \times 0.36 = 1.764 \, \text{m} \) | Substitute the time into the vertical displacement formula to find how far below the target the bullet hits. |
7 | \(\boxed{1.764 \, \text{m}}\) | This is the vertical displacement of the bullet below the target when it hits. |
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \(t = \frac{\Delta x}{v_i}\) | As derived previously, time can be found using the horizontal motion formula \( t = \frac{\Delta x}{v} \). |
2 | \(t = \frac{120 \, \text{m}}{200 \, \text{m/s}} = 0.6 \, \text{s}\) | Substitute the given values to find the time it takes for the bullet to reach the target. |
3 | \(\boxed{0.6 \, \text{s}}\) | This is the time it took for the bullet to reach the target. |
Just ask: "Help me solve this problem."
A javelin thrower standing at rest holds the center of the javelin behind her head, then accelerates it through a distance of \( 70 \, \text{cm} \) as she throws. She releases the \( 600 \, \text{g} \) javelin \( 2.0 \, \text{m} \) above the ground traveling at an angle of \( 30^\circ \) above the horizontal. In this throw, the javelin hits the ground \( 54 \, \text{m} \) away. Find the following:
An arrow is shot horizontally from a distance of \( 20 \, \text{m} \) away. It lands \( 0.05 \, \text{m} \) below the center of the target. If air resistance is negligible, what was the initial speed of the arrow?
One ball is dropped vertically from a window. At the same instant, a second ball is thrown horizontally from the same window. Which ball has the greater speed at ground level?
Seo-Jun throws a ball to her friend Zuri. The ball leaves Seo-Jun’s hand from a height \( h = 1.5 \) \( \text{m} \) above the ground with an initial speed \( \vec{v}_{s,0} = 12 \) \( \text{m/s} \) at an angle of \( \theta = 25^\circ \) with respect to the horizontal. Zuri catches the ball at a height of \( h = 1.5 \) \( \text{m} \) above the ground, as shown in the figure.
After catching the ball, Zuri throws it back to Seo-Jun. The ball leaves Zuri’s hand from a height \( h = 1.5 \) \( \text{m} \) above the ground. The ball is moving with a speed of \( 15 \) \( \text{m/s} \) when it reaches a maximum height of \( 5.8 \) \( \text{m} \) above the ground.
At what height \( h’ \) above the ground will the ball be when the return throw reaches Seo-Jun?
A batter hits a fly ball which leaves the bat \( 0.90 \) \( \text{m} \) above the ground at an angle of \( 61^\circ \) with an initial speed of \( 28 \) \( \text{m/s} \) heading toward centerfield. Ignore air resistance.
a) 1.76 meters below
b) 0.6 seconds
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.