New Tool FRQ Atlas - Find, Solve, and Grade Any FRQ In Seconds.

AP Physics

Unit 8 - Fluids

GQ
Mathematical
Intermediate

Pro Tier

Unlimited Grading Credits, Explanations, and AI Assist

0 attempts

0% avg

Explanation 0
0

Part 1: Flow Velocity (Continuity)

Step Derivation/Formula Reasoning
1 \[ A_1 = \frac{\pi d_1^2}{4} \quad , \quad A_2 = \frac{\pi d_2^2}{4} \] Calculate the cross-sectional areas of the pipe at street level and top floor using the area formula for a circle. Here, \(d_1 = 0.05\,m\) and \(d_2 = 0.028\,m\).
2 \[ A_1 v_i = A_2 v_x \] Apply the continuity equation for incompressible flow which states that the volumetric flow rate must remain constant.
3 \[ v_x = \frac{A_1}{A_2} v_i = \left(\frac{d_1}{d_2}\right)^2 v_i \] Simplify the expression by canceling the common factor \(\frac{\pi}{4}\) in the area formulas, showing that the velocity scales as the square of the diameter ratio.
4 \[ v_x = \left(\frac{0.05}{0.028}\right)^2 (0.78) \approx 2.48\,m/s \] Substitute the given values: \(d_1 = 0.05\,m\), \(d_2 = 0.028\,m\), and \(v_i = 0.78\,m/s\). The ratio \(\left(\frac{0.05}{0.028}\right)^2 \) is approximately 3.188; multiplying by 0.78 yields \(v_x \approx 2.48\,m/s\).
5 \[ \boxed{v_x \approx 2.48\, m/s} \] This is the final computed flow velocity at the top floor of the building.

Part 2: Gauge Pressure (Bernoulli)

Step Derivation/Formula Reasoning
1 \[ \frac{P_1}{\rho} + \frac{v_i^2}{2} + g y_1 = \frac{P_2}{\rho} + \frac{v_x^2}{2} + g y_2 \] Write Bernoulli’s equation between the street level (point 1) and the top floor (point 2). Here, \(y_1 = 0\) and \(y_2 = 16\,m\).
2 \[ \frac{P_2}{\rho} = \frac{P_1}{\rho} + \frac{v_i^2 – v_x^2}{2} – g \Delta y \] Rearrange the equation to solve for \(P_2\), where \(\Delta y = y_2 – y_1 = 16\,m\).
3 \[ P_2 = P_1 + \rho \left(\frac{v_i^2 – v_x^2}{2} – g \Delta y \right) \] Multiply both sides by the density \(\rho\) to isolate \(P_2\).
4 \[ P_1 = 3.8\,atm = 3.8 \times 101325 \approx 385035\,Pa \] Convert the gauge pressure at street level from atmospheres to Pascals using \(1\,atm \approx 101325\,Pa\).
5 \[ \frac{v_i^2 – v_x^2}{2} = \frac{0.78^2 – 2.48^2}{2} \approx \frac{0.6084 – 6.1504}{2} \approx -2.77\, m^2/s^2 \] Calculate the difference in kinetic energy per unit mass between the two points.
6 \[ g \Delta y = 9.8 \times 16 \approx 156.8\, m^2/s^2 \] Compute the gravitational potential energy change per unit mass over a height of \(16\,m\).
7 \[ \rho \left( \frac{v_i^2 – v_x^2}{2} – g \Delta y \right) \approx 1000 \left(-2.77 – 156.8\right) \approx -159570\,Pa \] Combine the kinetic and potential terms multiplied by the density \(\rho = 1000\,kg/m^3\) to find the pressure change.
8 \[ P_2 \approx 385035 – 159570 \approx 225465\,Pa \] Subtract the pressure drop from the initial gauge pressure to get the gauge pressure at the top floor.
9 \[ \boxed{P_2 \approx 2.25 \times 10^5\,Pa} \] This is the final gauge pressure of the water in the pipe on the top floor.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

We'll help clarify entire units in one hour or less — guaranteed.

NEW AI Quiz Builder

Be the first to use our new Quiz platform to create and grade quizzes from scratch. Join the waitlist and we'll email you for early access.

Go Pro to remove ads + unlimited access to our AI learning tools.
  1. \( v_x \approx 2.48 \, \text{m/s} \)
  2. \( P_2 \approx 2.25 \times 10^5 \, \text{Pa} \)

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

Metric Prefixes

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!

Phy Pro

One price to unlock most advanced version of Phy across all our tools.

$11.99

per month

Billed Monthly. Cancel Anytime.

Physics is Hard, But It Does NOT Have to Be

We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.

Trusted by 10k+ Students

📚 Predict Your AP Physics Exam Score

Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.

Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed

We use cookies to improve your experience. By continuing to browse on Nerd Notes, you accept the use of cookies as outlined in our privacy policy.