0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[T = 2\pi \sqrt{\frac{I}{mg\,\Delta x}}\] | This is the period formula for a physical pendulum, where \(I\) is the moment of inertia and \(\Delta x\) is the distance from the pivot to the center of mass. |
| 2 | \[\Delta x = r\] | Since the ornament (a thin hollow sphere) is suspended by a wire attached at its top, the distance from the pivot to its center of mass is the radius \(r\) of the sphere. |
| 3 | \[T = 2\pi \sqrt{\frac{I}{mgr}}\] | Substitute \(\Delta x = r\) into the period formula. |
| 4 | \[I = \frac{5}{3}mr^2\] | The moment of inertia about the pivot is given. But you can also use the parallel axis theorem for a thin hollow sphere: \(I = I_{\text{cm}} + mr^2 = \frac{2}{3}mr^2 + mr^2 = \frac{5}{3}mr^2\). |
| 5 | \[T = 2\pi \sqrt{\frac{\frac{5}{3}mr^2}{mgr}} = 2\pi \sqrt{\frac{5r}{3g}}\] | Substitute \(I = \frac{5}{3}mr^2\) into the period expression and cancel the common factors \(m\) and \(r\). |
| 6 | \[T = \frac{1}{f}\] | Relate the period \(T\) with the frequency \(f\) using \(f = 1/T\). Given \(f = 2.50\;\text{Hz}\), \(T = \frac{1}{2.50}\). |
| 7 | \[\frac{1}{f} = 2\pi \sqrt{\frac{5r}{3g}}\] | Express the period in terms of the frequency and set it equal to the derived expression from step 5. |
| 8 | \[\left(\frac{1}{f}\right)^2 = 4\pi^2 \frac{5r}{3g}\] | Square both sides to eliminate the square root. |
| 9 | \[\frac{5r}{3g} = \frac{1}{4\pi^2 f^2}\] | Solve for the expression containing \(r\) by isolating it on one side. |
| 10 | \[r = \frac{3g}{5} \cdot \frac{1}{4\pi^2 f^2} = \frac{3g}{20\pi^2 f^2}\] | Solve for \(r\) by multiplying both sides appropriately. |
| 11 | \[r = \frac{3(9.80)}{20\pi^2 (2.50)^2}\] | Substitute \(g = 9.80\;\text{m/s}^2\) and \(f = 2.50\;\text{Hz}\) into the expression. |
| 12 | \[r \approx \frac{29.4}{1233.7} \approx 0.024\;\text{m}\] | Calculate the numerical value |
Just ask: "Help me solve this problem."
A rod of length \( L \) is rotated about its center with \( I = \frac{ML^{2}}{12} \). What is the moment of inertia at either end of the rod?
Two uniform disks have the same mass but different radii: disk \( 1 \) has a radius \( R \) and disk \( 2 \) has a radius \( 2R \). What is the ratio of the moment of inertia of the first disk to the second disk?
What is the rotational inertia \( I \) of a disk with a radius \( R = 4 \) \( \text{m} \) and a mass \( 2 \) \( \text{kg} \)? The same disk is rotated around an axis that is \( 0.5 \) \( \text{m} \) from the center of the disk. What is the new rotational inertia \( I \) of the disk? What would the rotational inertia be if the disk axis was \( 3.75 \) \( \text{m} \) from the center?
A solid metal bar is at rest on a horizontal frictionless surface. It is free to rotate about a vertical axis at the left end. The figures below show forces of different magnitudes that are exerted on the bar at different locations. In which case does the bar’s angular speed about the axis increase at the fastest rate?
A block attached to a spring demonstrates simple harmonic motion about its equilibrium position with amplitude \( A \) and angular frequency \( \omega \). What is the maximum magnitude of the block’s velocity?
\(\boxed{r \approx 0.024\;\text{m}}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?