0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[A_1 = \pi r_1^2 = \pi (0.03)^2 = 0.0009\pi\, \text{m}^2\] | Calculate the entrance cross-sectional area using \(A = \pi r^2\). |
| 2 | \[A_2 = \pi r_2^2 = \pi (0.01)^2 = 0.0001\pi\, \text{m}^2\] | Calculate the exit cross-sectional area the same way. |
| 3 | \[v_2 = v_1 \frac{A_1}{A_2}\] | Continuity: for an incompressible fluid \(A_1 v_1 = A_2 v_2\). |
| 4 | \[v_2 = 9 v_1\] | The area ratio is \(A_1/A_2 = 0.0009\pi/0.0001\pi = 9\). |
| 5 | \[\Delta P = \frac{1}{2}\rho (v_2^2 – v_1^2)\] | Bernoulli’s equation for equal heights: \(P_1 + \tfrac{1}{2}\rho v_1^2 = P_2 + \tfrac{1}{2}\rho v_2^2\). |
| 6 | \[\Delta P = \frac{1}{2}\rho (81v_1^2 – v_1^2) = 40\rho v_1^2\] | Substitute \(v_2 = 9v_1\) and simplify: \(81v_1^2 – v_1^2 = 80v_1^2\). |
| 7 | \[v_1 = \sqrt{\frac{\Delta P}{40\rho}}\] | Solve algebraically for \(v_1\). |
| 8 | \[v_1 = \sqrt{\frac{15000}{40(700)}} \approx 0.73\, \text{m/s}\] | Insert \(\Delta P = 15000\,\text{Pa}\) and \(\rho = 700\,\text{kg/m}^3\). |
| 9 | \[\boxed{v_1 \approx 0.73\, \text{m/s}}\] | Entrance velocity found. |
| 10 | \[v_2 = 9v_1 \approx 6.59\, \text{m/s}\] | Use the continuity result. |
| 11 | \[\boxed{v_2 \approx 6.59\, \text{m/s}}\] | Exit velocity found. |
| 12 | \[Q = A_1 v_1 = 0.0009\pi (0.73) \approx 2.07\times10^{-3}\, \text{m}^3/\text{s}\] | Flow rate is area times entrance velocity. |
| 13 | \[\boxed{Q \approx 2.07\times10^{-3}\, \text{m}^3/\text{s}}\] | Volumetric flow rate boxed. |
Just ask: "Help me solve this problem."
An air mattress pump blows air above a beach ball at \( 8 \) \( \text{m/s} \). The air below the beach ball is moving at \( \approx 0 \) \( \text{m/s} \). Assuming the beach ball diameter is \( 0.1 \) \( \text{m} \), meaning the areas for the top \& bottom are each \( \approx 0.03 \) \( \text{m}^2 \), and the density of air is \( 1 \) \( \text{kg/m}^3 \), what is the lift force on the beach ball?
A fountain with an opening of radius \( 0.015 \) \( \text{m} \) shoots a stream of water vertically from ground level at \( 6.0 \) \( \text{m/s} \). The density of water is \( 1000 \) \( \text{kg/m}^3 \).
A fluid flows through the two sections of a cylindrical pipe. The narrow section of the pipe has radius \( R \) and the wide section has radius \( 2R \). What is the ratio of the fluid’s speed in the wide section of pipe to its speed in the narrow section of pipe, \( \dfrac{v_{\text{wide}}}{v_{\text{narrow}}} \)?

An object is suspended from a spring scale first in air, then in water, as shown in the figure above. The spring scale reading in air is \( 17.8 \) \( \text{N} \), and the spring scale reading when the object is completely submerged in water is \( 16.2 \) \( \text{N} \). The density of water is \( 1000 \) \( \text{kg/m}^3 \).
In the lab, a student is given a glass beaker filled with water with an ice cube of mass \( m \) and volume \( V_c \) floating in it.
The downward force of gravity on the ice cube has magnitude \( F_g \). The student pushes down on the ice cube with a force of magnitude \( F_P \) so that the cube is totally submerged. The water then exerts an upward buoyant force on the ice cube of magnitude \( F_B \). Which of the following is an expression for the magnitude of the acceleration of the ice cube when it is released?
Entrance velocity: \(v_1 = 0.73\,\text{m/s}\)
Exit velocity: \(v_2 = 6.59\,\text{m/s}\)
Flow rate: \(Q = 2.07\times10^{-3}\,\text{m}^3/\text{s}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?