0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[A_1 = \pi r_1^2 = \pi (0.03)^2 = 0.0009\pi\, \text{m}^2\] | Calculate the entrance cross-sectional area using \(A = \pi r^2\). |
| 2 | \[A_2 = \pi r_2^2 = \pi (0.01)^2 = 0.0001\pi\, \text{m}^2\] | Calculate the exit cross-sectional area the same way. |
| 3 | \[v_2 = v_1 \frac{A_1}{A_2}\] | Continuity: for an incompressible fluid \(A_1 v_1 = A_2 v_2\). |
| 4 | \[v_2 = 9 v_1\] | The area ratio is \(A_1/A_2 = 0.0009\pi/0.0001\pi = 9\). |
| 5 | \[\Delta P = \frac{1}{2}\rho (v_2^2 – v_1^2)\] | Bernoulli’s equation for equal heights: \(P_1 + \tfrac{1}{2}\rho v_1^2 = P_2 + \tfrac{1}{2}\rho v_2^2\). |
| 6 | \[\Delta P = \frac{1}{2}\rho (81v_1^2 – v_1^2) = 40\rho v_1^2\] | Substitute \(v_2 = 9v_1\) and simplify: \(81v_1^2 – v_1^2 = 80v_1^2\). |
| 7 | \[v_1 = \sqrt{\frac{\Delta P}{40\rho}}\] | Solve algebraically for \(v_1\). |
| 8 | \[v_1 = \sqrt{\frac{15000}{40(700)}} \approx 0.73\, \text{m/s}\] | Insert \(\Delta P = 15000\,\text{Pa}\) and \(\rho = 700\,\text{kg/m}^3\). |
| 9 | \[\boxed{v_1 \approx 0.73\, \text{m/s}}\] | Entrance velocity found. |
| 10 | \[v_2 = 9v_1 \approx 6.59\, \text{m/s}\] | Use the continuity result. |
| 11 | \[\boxed{v_2 \approx 6.59\, \text{m/s}}\] | Exit velocity found. |
| 12 | \[Q = A_1 v_1 = 0.0009\pi (0.73) \approx 2.07\times10^{-3}\, \text{m}^3/\text{s}\] | Flow rate is area times entrance velocity. |
| 13 | \[\boxed{Q \approx 2.07\times10^{-3}\, \text{m}^3/\text{s}}\] | Volumetric flow rate boxed. |
Just ask: "Help me solve this problem."

The radius of the left piston is \( 0.12 \) \( \text{m} \) and the radius of the right piston is \( 0.65 \) \( \text{m} \). If \( f \) were raised by \( 14 \) \( \text{N} \), how much would \( F \) need to be increased to maintain equilibrium?

A helium-filled balloon is attached by a string of negligible mass to a small \(0.015 \ \text{kg}\) object that is just heavy enough to keep the balloon from rising. The total mass of the balloon, including the helium, is \(0.0050 \ \text{kg}\). The density of air is \(\rho_{\text{air}} = 1.29 \ \text{kg/m}^3\), and the density of helium is \(\rho_{\text{He}} = 0.179 \ \text{kg/m}^3\). The buoyant force on the \(0.015 \ \text{kg}\) object is small enough to be negligible.

A pump, submerged at the bottom of a well that is \( 35 \) \( \text{m} \) deep, is used to pump water uphill to a house that is \( 50 \) \( \text{m} \) above the top of the well, as shown to the right. The density of water is \( 1000 \) \( \text{kg/m}^3 \). All pressures are gauge pressures. Neglect the effects of friction, turbulence, and viscosity.
A spherical balloon has a radius of \(7.15\) \(\text{m}\) and is filled with helium. How large a cargo can it lift, assuming that the skin and structure of the balloon have a mass of \(930\) \(\text{kg}\)?
Take the density of helium and air to be \(0.18\) \(\text{kg/m}^3\) and \(1.24\) \(\text{kg/m}^3\), respectively.

In the laboratory, you are given a cylindrical beaker containing a fluid and you are asked to determine the density \( \rho \) of the fluid. You are to use a spring of negligible mass and unknown spring constant \( k \) that is attached to a vertical stand.
Entrance velocity: \(v_1 = 0.73\,\text{m/s}\)
Exit velocity: \(v_2 = 6.59\,\text{m/s}\)
Flow rate: \(Q = 2.07\times10^{-3}\,\text{m}^3/\text{s}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?