0 attempts
0% avg
UBQ Credits
First, calculate the initial velocity of the ball.
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]y = v_{0y} t – \frac{1}{2} g t^2[/katex] | Vertical motion equation for height ([katex]y[/katex]), initial vertical velocity ([katex]v_{0y}[/katex]), time ([katex]t[/katex]), and acceleration due to gravity ([katex]g[/katex]). |
2 | [katex]v_{0y} = \frac{y + \frac{1}{2} g t^2}{t}[/katex] | Solve for initial vertical velocity ([katex]v_{0y}[/katex]). |
3 | [katex]v_{0x} = \frac{d}{t}[/katex] | Horizontal velocity ([katex]v_{0x}[/katex]) is constant, where [katex]d[/katex] is the distance to the wall. |
4 | [katex]v_{0} = \sqrt{v_{0x}^2 + v_{0y}^2}[/katex] | Initial velocity magnitude using Pythagorean theorem, combining horizontal and vertical components. |
Given values:
Next, determine the horizontal range of the ball.
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]R = v_{0x} T[/katex] | Horizontal range ([katex]R[/katex]), where [katex]T[/katex] is the total time of flight. |
2 | [katex]\Delta y = v_{oy}t \frac{1}{2}gt^2[/katex] | Total time of flight from launch to landing on rood, using symmetry of projectile motion. T = 2.65 seconds. |
Finally, calculate the vertical distance the ball clears the wall.
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]h_{clear} = y_{peak} – y_{wall}[/katex] | Vertical clearance ([katex]h_{clear}[/katex]) is the difference between the peak height ([katex]y_{peak}[/katex]) and wall height ([katex]y_{wall}[/katex]). |
2 | [katex]y_{peak} = \frac{v_{0y}^2}{2g}[/katex] | Peak height calculation using the initial vertical velocity. Peak height = 12.7 m. |
The calculations yield the following results:
Just ask: "Help me solve this problem."
Seo-Jun throws a ball to her friend Zuri. The ball leaves Seo-Jun’s hand from a height \( h = 1.5 \) \( \text{m} \) above the ground with an initial speed \( \vec{v}_{s,0} = 12 \) \( \text{m/s} \) at an angle of \( \theta = 25^\circ \) with respect to the horizontal. Zuri catches the ball at a height of \( h = 1.5 \) \( \text{m} \) above the ground, as shown in the figure.
After catching the ball, Zuri throws it back to Seo-Jun. The ball leaves Zuri’s hand from a height \( h = 1.5 \) \( \text{m} \) above the ground. The ball is moving with a speed of \( 15 \) \( \text{m/s} \) when it reaches a maximum height of \( 5.8 \) \( \text{m} \) above the ground.
At what height \( h’ \) above the ground will the ball be when the return throw reaches Seo-Jun?
3 clay balls, labeled A, B, and C are launched from the same height at the same speed as shown above. A is launched at \( 30^\circ \) above horizontal, B is launched horizontally, and C is launched \( 30^\circ \) below the horizontal. They all hit the wall (before reaching the ground) in times \( t_A \), \( t_B \), and \( t_C \) respectively. Rank these times from least to greatest.
A soccer ball with an initial height of \(1.5 \, \text{m}\) above the ground is launched at an angle of \(30^\circ\) above the horizontal. The soccer ball travels a horizontal distance of \(45 \, \text{m}\) to a \(9.0 \, \text{m}\) high castle wall, and passes over \(3.20 \, \text{m}\) above the highest point of the wall. Assume air resistance is negligible.
The highest barrier that a projectile can clear is 16.2 m, when the projectile is launched at an angle of 22.0° above the horizontal. What is the projectile’s launch speed?
A drinking fountain projects water at an initial angle of \( 50^ \circ \) above the horizontal, and the water reaches a maximum height of \( 0.150 \) \( \text{m} \) above the point of exit. Assume air resistance is negligible.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.