0 attempts
0% avg
UBQ Credits
Part A:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[v_{1} = \sqrt{2gh}\] | The speed of the ball just after it first bounces off the plane at \(P_1\) is the same as it was before the bounce due to energy conservation. The initial speed when it contacts the plane is derived from potential energy being converted into kinetic energy. |
Part B:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[\Delta y = -\frac{1}{2} g t^{2}\] | The vertical displacement \(\Delta y\) as the ball travels in projectile motion is given by this equation. |
2 | \[\Delta x = \sqrt{2gh} \cdot t\] | The horizontal displacement \(\Delta x\) as the ball travels horizontally with initial velocity \(v_{x} = \sqrt{2gh}\). |
3 | \[-\frac{1}{2} g t^{2} = -\sqrt{2gh} \cdot t\] | The condition for the ball to land on the 45-degree inclined plane again is \(\Delta y = -\Delta x\). |
4 | \[t = \frac{2\sqrt{2gh}}{g}\] | Solving the above equation for time \(t\), which is the time of flight between \(P_1\) and \(P_2\). |
Part C:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[x = \sqrt{2gh} \cdot \frac{2\sqrt{2gh}}{g} = 4h\] | The horizontal position \(x\) relative to \(P_1\) at time \(t\). |
2 | \[y = -\frac{1}{2} g \left(\frac{2\sqrt{2gh}}{g}\right)^{2} = -4h\] | The vertical position \(y\) relative to \(P_1\) at time \(t\). |
3 | \[L = \sqrt{(4h)^{2} + (-4h)^{2}} = 4\sqrt{2}h\] | Calculate the distance \(L\) along the plane from \(P_1\) to \(P_2\). |
Part D:
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[v_{x} = \sqrt{2gh}\] | The horizontal velocity component \(v_{x}\) just before striking the plane at \(P_2\). |
2 | \[v_{y} = -g \cdot \frac{2\sqrt{2gh}}{g} = -2\sqrt{2gh}\] | The vertical velocity component \(v_{y}\) just before striking the plane at \(P_2\). |
3 | \[v_{2} = \sqrt{(\sqrt{2gh})^{2} + (-2\sqrt{2gh})^{2}} = \sqrt{10gh}\] | Calculate the speed \(v_{2}\) of the ball just before it strikes the plane at \(P_2\). |
Just ask: "Help me solve this problem."
An object is projected vertically upward from ground level. It rises to a maximum height [katex] H [/katex]. If air resistance is negligible, which of the following must be true for the object when it is at a height [katex] H/2 [/katex] ?
An object undergoing simple harmonic motion has a maximum displacement of \(6.2\) \(\text{m}\) at \(t = 0.0\) \(\text{s}\). If the angular frequency of oscillation is \(1.6\) \(\text{rad/s}\), what is the object’s displacement when \(t = 3.5\) \(\text{s}\)?
A stone is thrown horizontally at \(8.0 \, \text{m/s}\) from a cliff \(80 \,\text{m}\) high. How far from the base of the cliff will the stone strike the ground?
The escape speed of an object of mass \( m \) from a planet of mass \( M \) and radius \( r \) depends on the gravitational constant and
A car accelerates uniformly from rest to [katex] 29.4 [/katex] m/s in [katex] 6.93 [/katex] s along a level stretch of road. Ignoring friction, determine the average power in both watts and horsepower ([katex] 1 \text{ horsepower} = 745.7 \text{ Watts} [/katex]) required to accelerate the car if:
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.