- (a)
Calculate the time taken for the ball to reach the wall.
*(3 points)* - (b)
Calculate the initial speed of the cannonball.
*(3 points)* - (c) Find the velocity of the cannonball as it passes over the wall.
*(3 points)* - (d) If the same cannonball is fired with the same initial speed at an angle of 55.5° above the horizontal, determine whether or not the ball will still clear the castle wall.
*(3 points)*

Solve. Take a picture. Upload. Phy will grade your working.

Phy Beta V5 (1.28.24) – Systems Operational.

- Statistics

*h* when fired straight up. If the same gun is pointed at an angle of 45° from the vertical, what is the new maximum height of the projectile?

A plane, 220 meters high, is dropping a supply crate to an island below. It is traveling with a horizontal velocity of 150 m/s. At what horizontal distance must the plane drop the supply crate for it to land on the island?

(a) 589 meters (b) 755 meters (c) 964 meters (d) 1005 meters (e) 1127 meters

One end of a spring is attached to a solid wall while the other end just reaches to the edge of a horizontal, frictionless tabletop, which is a distance h above the floor. A block of mass M is placed against the end of the spring and pushed toward the wall until the spring has been compressed a distance x . The block is released and strikes the floor a horizontal distance D from the edge of the table. Air resistance is negligible.

Derive an expressions for the following quantities only in terms of M, x, D, h, and any constants.

*M* is attached to a string of length *L*. It moves in a vertical circle and at the bottom the ball just clears the ground. The tension at the bottom of the path is 3 times the weight of the ball. Give all answers in terms of *M*, *L*, and *g*.

*t _{A}*,

Three identical rocks are launched with identical speeds from the top of a platform of height h_{0}.

- Rock 1 is launched at a 45° angle above the horizontal
- Rock 2 is launched at a 45° angle below the horizontal
- Rock 3 is launched horizontally

Which of the following correctly relates the magnitude *v _{y}* of the vertical component of the velocity of each rock immediately before it hits the ground?

_{A} below the center, however. The second time, the rifle is similarly aimed, but from twice the distance from the target. This time the bullet strikes the target at a distance of H_{B} below the center. Find the ratio Н_{B}/ Н_{А}.

An eagle is flying horizontally at 6.0 m/s with a fish in its claws. It accidentally drops the fish.

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

What went wrong? Found something incorrect? OR just want to tell us to add/improve something on this page? We listen to all your feedback!

You must be signed in to leave feedback

Kinematics | Forces |
---|---|

\Delta x = v_i t + \frac{1}{2} at^2 | F = ma |

v = v_i + at | F_g = \frac{G m_1m_2}{r^2} |

a = \frac{\Delta v}{\Delta t} | f = \mu N |

R = \frac{v_i^2 \sin(2\theta)}{g} |

Circular Motion | Energy |
---|---|

F_c = \frac{mv^2}{r} | KE = \frac{1}{2} mv^2 |

a_c = \frac{v^2}{r} | PE = mgh |

KE_i + PE_i = KE_f + PE_f |

Momentum | Torque and Rotations |
---|---|

p = m v | \tau = r \cdot F \cdot \sin(\theta) |

J = \Delta p | I = \sum mr^2 |

p_i = p_f | L = I \cdot \omega |

Simple Harmonic Motion |
---|

F = -k x |

T = 2\pi \sqrt{\frac{l}{g}} |

T = 2\pi \sqrt{\frac{m}{k}} |

Constant | Description |
---|---|

g | Acceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface |

G | Universal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2 |

\mu_k and \mu_s | Coefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion. |

k | Spring constant, in \text{N/m} |

M_E = 5.972 \times 10^{24} , \text{kg} | Mass of the Earth |

M_M = 7.348 \times 10^{22} , \text{kg} | Mass of the Moon |

M_M = 1.989 \times 10^{30} , \text{kg} | Mass of the Sun |

Variable | SI Unit |
---|---|

s (Displacement) | \text{meters (m)} |

v (Velocity) | \text{meters per second (m/s)} |

a (Acceleration) | \text{meters per second squared (m/s}^2\text{)} |

t (Time) | \text{seconds (s)} |

m (Mass) | \text{kilograms (kg)} |

Variable | Derived SI Unit |
---|---|

F (Force) | \text{newtons (N)} |

E, PE, KE (Energy, Potential Energy, Kinetic Energy) | \text{joules (J)} |

P (Power) | \text{watts (W)} |

p (Momentum) | \text{kilogram meters per second (kgm/s)} |

\omega (Angular Velocity) | \text{radians per second (rad/s)} |

\tau (Torque) | \text{newton meters (Nm)} |

I (Moment of Inertia) | \text{kilogram meter squared (kgm}^2\text{)} |

f (Frequency) | \text{hertz (Hz)} |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`\text{5 km}`

Use the conversion factors for kilometers to meters and meters to millimeters:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}`

Perform the multiplication:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}`

Simplify to get the final answer:

`\boxed{5 \times 10^6 \, \text{mm}}`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | 10^{-12} | 0.000000000001 |

Nano- | n | 10^{-9} | 0.000000001 |

Micro- | µ | 10^{-6} | 0.000001 |

Milli- | m | 10^{-3} | 0.001 |

Centi- | c | 10^{-2} | 0.01 |

Deci- | d | 10^{-1} | 0.1 |

(Base unit) | – | 10^{0} | 1 |

Deca- or Deka- | da | 10^{1} | 10 |

Hecto- | h | 10^{2} | 100 |

Kilo- | k | 10^{3} | 1,000 |

Mega- | M | 10^{6} | 1,000,000 |

Giga- | G | 10^{9} | 1,000,000,000 |

Tera- | T | 10^{12} | 1,000,000,000,000 |

- Some answers may be slightly off by 1% depending on rounding, etc.
- Answers will use different values of gravity. Some answers use 9.81 m/s
^{2}, and other 10 m/s^{2 }for calculations. - Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
- Bookmark questions that you can’t solve so you can come back to them later.
- Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!