0 attempts

0% avg

UBQ Credits

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | \( \Delta x_{\text{North}} = 160 \, \text{m} \) | The seagull first flies 160 m North. |

2 | \( \Delta x_{\text{North}} = 160 \, \text{m} + 120.65 \, \text{m} \cdot \sin(18.43^\circ) \) | The additional Northward component of the second leg of the journey is calculated using trigonometry. \( \sin(18.43^\circ) \) gives the Northward component of the 120.65 m vector. |

3 | \( \Delta x_{\text{North}} \approx 160 \, \text{m} + 38 {\, \text{m}} \approx 198.17 \, \text{m} \) | Evaluating the expression to get the total Northward displacement of 198.17 meters. |

4 | \( \Delta x_{\text{West}} = 120.65 \, \text{m} \cdot \cos(18.43^\circ) \) | The Westward component of the second leg of the journey is calculated using trigonometry. \( \cos(18.43^\circ) \) gives the Westward component of the 120.65 m vector. |

5 | \( \Delta x_{\text{West}} \approx 120.65 \, \text{m} \cdot 0.949 \approx 114.52 \, \text{m} \) | Evaluating the expression to get the total Westward displacement of 114.5 meters. |

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | \( d = 160 \, \text{m} + 120.65 \, \text{m} \) | The total distance is simply the sum of the distances traveled in each segment of the journey. |

2 | \( d = 280.65 \, \text{m} \) | Add up the distances to find the total path length. |

Step | Derivation/Formula | Reasoning |
---|---|---|

1 | \( \Delta x_{\text{total}} = \sqrt{(\Delta x_{\text{North}})^{2} + (\Delta x_{\text{West}})^{2}} \) | Use the Pythagorean theorem to calculate the resultant displacement vector from the Northward and Westward components. |

2 | \( \Delta x_{\text{total}} = \sqrt{(198.17 \, \text{m})^{2} + (114.52 \, \text{m})^{2}} \) | Substitute the calculated Northward and Westward components. |

3 | \( \Delta x_{\text{total}} \approx \sqrt{39271 + 13120} = \sqrt{52391} \approx 228.74 \, \text{m} \) | Evaluate the expression to find the total displacement. |

4 | \( \Delta x_{\text{total}} = 228.74 \, \text{m} \) |
Final total displacement of the seagull. |

Just ask: "Help me solve this problem."

- Statistics

Intermediate

Mathematical

FRQ

While Santa was delivering presents to the children of Nashville, Tennessee he experienced a strong wind perpendicular to his motion.

- Vectors

Intermediate

Mathematical

FRQ

Two racing boats set out from the same dock and speed away at the same constant speed of 101 km/h for half an hour (0.5 hr). Boat 1 is headed 27.6° south of west, and Boat 2 is headed 35.3° south of west, as shown in the graph above. During this half-hour calculate:

- Vectors

Intermediate

Mathematical

GQ

Determine the sum of the 3 vectors given below. Give the resultant (R) in terms of (a) vector components (b) resultant vector.

Vectors:

[katex] \vec{A} = 26.5 m [/katex] @ at 56° NW

[katex] \vec{B} = 44 m [/katex] @ at 28° NE

[katex] \vec{C} = 31 m [/katex] South

- Vectors

Advanced

Mathematical

GQ

Gregory was walking through the halls of the school when he realized that he was walking in perpendicular directions and he could easily calculate his displacement using the incredibly useful techniques he learned in physics. He recognized that he walked 12.5 meters left and then 18.9 meters down. How far must he walk to the right so that his resultant displacement is 20.1 m?

- Vectors

Intermediate

Mathematical

GQ

A boat is rowed directly upriver at a speed of \(2.5 \, \text{m/s}\) relative to the water. Viewers on the shore find that it is moving at only \(0.5 \, \text{m/s}\) relative to the shore. What is the speed of the river? Is it moving with or against the boat?

- 1D Kinematics, Relative Motion, Vectors

- 198 m North and 114.5 m West
- Total distance: \( 280.65 \, \text{m} \)
- Displacement: \( 228.6 \, \text{m} \) @ \( 60^\circ \) North of West (note: you must give both magnitude and direction, as displacement is a vector).

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |

\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |

\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |

\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |

\(v^2 = v_f^2 \,-\, 2a \Delta x\) |

Circular Motion | Energy |
---|---|

\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |

\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |

\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |

\(W = Fd \cos\theta\) |

Momentum | Torque and Rotations |
---|---|

\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |

\(J = \Delta p\) | \(I = \sum mr^2\) |

\(p_i = p_f\) | \(L = I \cdot \omega\) |

Simple Harmonic Motion | Fluids |
---|---|

\(F = -kx\) | \(P = \frac{F}{A}\) |

\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |

\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |

\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |

\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |

Constant | Description |
---|---|

[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |

[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |

[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |

[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |

[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |

[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |

[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |

Variable | SI Unit |
---|---|

[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |

[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |

[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |

[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |

[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |

Variable | Derived SI Unit |
---|---|

[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |

[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |

[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |

[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |

[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |

[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |

[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |

[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`[katex]\text{5 km}[/katex]`

Use the conversion factors for kilometers to meters and meters to millimeters:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]`

Perform the multiplication:

`[katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]`

Simplify to get the final answer:

`[katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |

Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |

Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |

Milli- | m | [katex]10^{-3}[/katex] | 0.001 |

Centi- | c | [katex]10^{-2}[/katex] | 0.01 |

Deci- | d | [katex]10^{-1}[/katex] | 0.1 |

(Base unit) | – | [katex]10^{0}[/katex] | 1 |

Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |

Hecto- | h | [katex]10^{2}[/katex] | 100 |

Kilo- | k | [katex]10^{3}[/katex] | 1,000 |

Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |

Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |

Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |

- 1. Some answers may vary by 1% due to rounding.
- Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
- Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
- Bookmark questions you can’t solve to revisit them later
- 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages and Images
- Unlimited UBQ Credits
- 157% Better than GPT
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- All Smart Actions
- Mobile Snaps
- Focus Mode
- No Ads

A quick explanation

Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.

Submitting counts as 1 attempt.

Viewing answers or explanations count as a failed attempts.

Phy gives partial credit if needed

MCQs and GQs are are 1 point each. FRQs will state points for each part.

Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.

Understand you mistakes quicker.

Phy automatically provides feedback so you can improve your responses.

10 Free Credits To Get You Started