Phy can also check your working. Just snap a picture!

- Statistics

Intermediate

Mathematical

GQ

Determine the sum of the 3 vectors given below. Give the resultant (R) in terms of (a) vector components (b) resultant vector.

Vectors:

\vec{A} = 26.5 m @ at 56° NW

\vec{B} = 44 m @ at 28° NE

\vec{C} = 31 m South

- Vectors

Intermediate

Mathematical

GQ

A person is standing at the edge of the water and looking out at the ocean. The height of the person’s eyes above the water is *h* = 1.8 m, and the radius of the Earth is *R* = 6.38 × 10^{6} m. How far is it to the horizon (in meters)? In other words, find the distance d from the person’s eyes to the horizon.

*(Note: At the horizon the angle between the line of sight and the radius of the earth is 90°)*

- Vectors

Intermediate

Mathematical

FRQ

Two racing boats set out from the same dock and speed away at the same constant speed of 101 km/h for half an hour (0.5 hr). Boat 1 is headed 27.6° south of west, and Boat 2 is headed 35.3° south of west, as shown in the graph above. During this half-hour calculate:

- Vectors

- 198 m North and 114.5 m West
- 280.65 m
- 228.6 m @ 60° North of West
*(note: you must give both magnitude and direction, as displacement is a vector)*

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Kinematics | Forces |
---|---|

\Delta x = v_i t + \frac{1}{2} at^2 | F = ma |

v = v_i + at | F_g = \frac{G m_1m_2}{r^2} |

a = \frac{\Delta v}{\Delta t} | f = \mu N |

R = \frac{v_i^2 \sin(2\theta)}{g} |

Circular Motion | Energy |
---|---|

F_c = \frac{mv^2}{r} | KE = \frac{1}{2} mv^2 |

a_c = \frac{v^2}{r} | PE = mgh |

KE_i + PE_i = KE_f + PE_f |

Momentum | Torque and Rotations |
---|---|

p = m v | \tau = r \cdot F \cdot \sin(\theta) |

J = \Delta p | I = \sum mr^2 |

p_i = p_f | L = I \cdot \omega |

Simple Harmonic Motion |
---|

F = -k x |

T = 2\pi \sqrt{\frac{l}{g}} |

T = 2\pi \sqrt{\frac{m}{k}} |

Constant | Description |
---|---|

g | Acceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface |

G | Universal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2 |

\mu_k and \mu_s | Coefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion. |

k | Spring constant, in \text{N/m} |

M_E = 5.972 \times 10^{24} , \text{kg} | Mass of the Earth |

M_M = 7.348 \times 10^{22} , \text{kg} | Mass of the Moon |

M_M = 1.989 \times 10^{30} , \text{kg} | Mass of the Sun |

Variable | SI Unit |
---|---|

s (Displacement) | \text{meters (m)} |

v (Velocity) | \text{meters per second (m/s)} |

a (Acceleration) | \text{meters per second squared (m/s}^2\text{)} |

t (Time) | \text{seconds (s)} |

m (Mass) | \text{kilograms (kg)} |

Variable | Derived SI Unit |
---|---|

F (Force) | \text{newtons (N)} |

E, PE, KE (Energy, Potential Energy, Kinetic Energy) | \text{joules (J)} |

P (Power) | \text{watts (W)} |

p (Momentum) | \text{kilogram meters per second (kgm/s)} |

\omega (Angular Velocity) | \text{radians per second (rad/s)} |

\tau (Torque) | \text{newton meters (Nm)} |

I (Moment of Inertia) | \text{kilogram meter squared (kgm}^2\text{)} |

f (Frequency) | \text{hertz (Hz)} |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`\text{5 km}`

Use the conversion factors for kilometers to meters and meters to millimeters:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}`

Perform the multiplication:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}`

Simplify to get the final answer:

`\boxed{5 \times 10^6 \, \text{mm}}`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | 10^{-12} | 0.000000000001 |

Nano- | n | 10^{-9} | 0.000000001 |

Micro- | µ | 10^{-6} | 0.000001 |

Milli- | m | 10^{-3} | 0.001 |

Centi- | c | 10^{-2} | 0.01 |

Deci- | d | 10^{-1} | 0.1 |

(Base unit) | – | 10^{0} | 1 |

Deca- or Deka- | da | 10^{1} | 10 |

Hecto- | h | 10^{2} | 100 |

Kilo- | k | 10^{3} | 1,000 |

Mega- | M | 10^{6} | 1,000,000 |

Giga- | G | 10^{9} | 1,000,000,000 |

Tera- | T | 10^{12} | 1,000,000,000,000 |

- Some answers may be slightly off by 1% depending on rounding, etc.
- Answers will use different values of gravity. Some answers use 9.81 m/s
^{2}, and other 10 m/s^{2 }for calculations. - Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
- Bookmark questions that you can’t solve so you can come back to them later.
- Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

The most advanced version of Phy. Currently 50% off, for early supporters.

per month

Billed Monthly. Cancel Anytime.

Trial –> Phy Pro

- Unlimited Messages
- Unlimited Image Uploads
- Unlimited Smart Actions
- Unlimited UBQ Credits
- 30 --> 300 Word Input
- 3 --> 15 MB Image Size Limit
- 1 --> 3 Images per Message
- 200% Memory Boost
- 150% Better than GPT
- 75% More Accurate, 50% Faster
- Mobile Snaps
- Focus Mode
- No Ads

A quick explanation

UBQ credits are specifically used to grade your FRQs and GQs.

You can still view questions and see answers without credits.

Submitting an answer counts as 1 attempt.

Seeing answer or explanation counts as a failed attempt.

Lastly, check your average score, across every attempt, in the top left.

MCQs are 1 point each. GQs are 1 point. FRQs will state points for each part.

Phy can give partial credit for GQs & FRQs.

Phy sees everything.

It customizes responses, explanations, and feedback based on what you struggle with. Try your best on every question!

Understand you mistakes quicker.

For GQs and FRQs, Phy provides brief feedback as to how you can improve your answer.

Aim to increase your understadning and average score with every attempt!

10 Free Credits To Get You Started

*Phy Pro members get unlimited credits