0 attempts
0% avg
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \(\tan(75^\circ) = \frac{v_y}{v_x}\) | To find the angle of the velocity vector, we use the relationship between the vertical and horizontal components. Here, \(v_y\) is the vertical speed, and \(v_x = 2.7 \, \text{m/s}\) is the horizontal speed, and we are given the angle is \(75^\circ\). |
| 2 | \( \tan(75^\circ) = \frac{v_y}{2.7}\) | Substitute the given horizontal speed \(v_x = 2.7 \, \text{m/s}\) into the equation. |
| 3 | \(v_y = 2.7 \tan(75^\circ)\) | Solve for the vertical speed \(v_y\). |
| 4 | \(\tan(75^\circ) \approx 3.73\) | Use a calculator to find the value of \(\tan(75^\circ)\). |
| 5 | \(v_y = 2.7 \times 3.73\) | Substitute the known value of \(\tan(75^\circ)\). |
| 6 | \(v_y \approx 10.07 \, \text{m/s}\) | Multiply to find the vertical speed \(v_y\). |
| 7 | \(v_y = v_i + at\) | Use the kinematic equation to solve for the time \(t\). Initial vertical velocity \(v_i = 0 \), acceleration \(a = g\) (where \(g = 9.8 \, \text{m/s}^2\)), and final vertical velocity \(v_y \approx 10.07 \, \text{m/s}\). |
| 8 | \(10.07 = 0 + 9.8 t\) | Substitute the known values into the kinematic equation. |
| 9 | \(t = \frac{10.07}{9.8}\) | Isolate the time \(t\). |
| 10 | \(t \approx 1.03 \, \text{s}\) | Solve for \(t\). |
| 11 | \Delta x = v_i t + \frac{1}{2} a t^2\) | Use the vertical displacement formula to find \(\Delta x\). Here, \(v_i = 0\), \(a = g\), and we need to find \(\Delta x\) for the time \(t\). |
| 12 | \( \Delta x = 0 + \frac{1}{2} (9.8)(1.03)^2\) | Plug in the values for \(a\) and \(t\). |
| 13 | \(\Delta x \approx \frac{1}{2} (9.8)(1.0609)\) | Simplify inside the parentheses. |
| 14 | \(\Delta x \approx 5.20 \, \text{m}\) | Calculate the final displacement. |
| 15 | \boxed{\Delta x \approx 5.20 \, \text{m}}\) | Final vertical distance below the edge where the velocity vector points downward at a \( 75^\circ \) angle. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
A soccer ball is kicked horizontally off an \( 85 \) \( \text{m} \) high cliff at a speed of \( 34 \) \( \text{m/s} \). What is the ball’s final speed when it hits the ground below?
A javelin thrower, of height \( 1.8 \) \( \text{m} \), throws a javelin with initial velocity of \( 26 \) \( \text{m s}^{-1} \) at \( 38^{\circ} \) to the horizontal. Calculate the time taken for the javelin to reach the ground from its maximum height. Give your answer in seconds and to an appropriate number of significant figures.
Two balls are launched at the same time from opposite sides of a \( 100 \) \( \text{m} \) wide and \(1000 ~\text{m}\) canyon. Ball A is launched at \( 20 \) \( \text{m/s} \) at \( 45^{\circ} \) from the left side. Ball B is launched at \( 20 \) \( \text{m/s} \) at \( 45^{\circ} \) from the right side.
A toy car moves off the edge of a table that is \(1.25 \, \text{m}\) high. If the car lands \(0.40 \,\text{m}\) from the base of the table…
A projectile is launched at \( 20 \) \( \text{m/s} \) and lands \( 35 \) \( \text{m} \) away on level ground. At what two horizontal positions is the projectile exactly \( 5.0 \) \( \text{m} \) above the ground?
A skier is accelerating down a \( 30.0^{\circ} \) hill at \( 3.80 \) \( \text{m/s}^2 \).
Wile E. Coyote is (still) chasing after his arch-nemesis, the Roadrunner across a cliff that is \(125 \, \text{m}\) high. The Coyote is running in the horizontal direction towards the edge of a cliff when, at the last second, the Roadrunner steps out of the way and the witless coyote falls to the canyon floor.
A projectile is launched at an upward angle of \( 30^\circ \) to the horizontal with a speed of \( 30 \) \( \text{m/s} \). How does the horizontal component of its velocity \( 1.0 \) \( \text{s} \) after launch compare with its horizontal component of velocity \( 2.0 \) \( \text{s} \) after launch, ignoring air resistance?
A car accelerates from rest with an acceleration of \( 3.5 \, \text{m/s}^2 \) for \( 10 \, \text{s} \). After this, it continues at a constant speed for an unknown amount of time. The driver notices a ramp \( 50 \, \text{m} \) ahead and takes \( 0.6 \, \text{s} \) to react. After reacting, the driver hits the brakes, which slow the car with an acceleration of \( 7.2 \, \text{m/s}^2 \). Unfortunately, the driver does not stop in time and goes off the \( 3 \, \text{m} \) high ramp that is angled at \( 27^\circ \).
A plane, 220 meters high, is dropping a supply crate to an island below. It is traveling with a horizontal velocity of 150 m/s. At what horizontal distance must the plane drop the supply crate for it to land on the island? Use [katex] g = 9.81 \, m/s^2[/katex].
5.2 m
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?