0 attempts
0% avg
Objective: Determine whether it takes longer for the hockey puck to slide up or down a distance d on an incline with kinetic friction μk=0.4, given an initial speed of 5 m/s.
Analysis for Upward Motion:
| Step | Formula Derivation | Reasoning |
|---|---|---|
| 1 | [katex]a_{\text{up}} = -g(\sin(\theta) + \mu_k \cos(\theta))[/katex] | Acceleration is due to gravity and kinetic friction opposing the motion. |
| 2 | [katex]v^2 = u^2 + 2a_{\text{up}}d[/katex] | Use the kinematic equation for final velocity. v =0 m/s at the top of incline. |
| 3 | [katex]t_{\text{up}} = \frac{v – u}{a_{\text{up}}}[/katex] | Time taken tup is found using the kinematic equation for time. |
| 4 | Substitute and solve for tup. [katex]u = 5 \text{ m/s}[/katex], [katex]\theta = 30^\circ[/katex], [katex]\mu_k = 0.4[/katex] | Calculate time up. |
Analysis for Downward Motion:
| Step | Formula Derivation | Reasoning |
|---|---|---|
| 5 | [katex]a_{\text{down}} = g(\sin(\theta) – \mu_k \cos(\theta))[/katex] | Acceleration is due to gravity assisted by friction. |
| 6 | [katex]t_{\text{down}} = \sqrt{\frac{2d}{a_{\text{down}}}}[/katex] | Time taken tdown using the kinematic equation for constant acceleration. |
| 7 | Substitute and solve for tdown. [katex]u = 0 \text{ m/s}[/katex] at the peak, [katex]\theta = 30^\circ[/katex], [katex]\mu_k = 0.4[/katex] | Calculate time down. |
Calculating the time for both upward and downward motions:
| Step | Result |
|---|---|
| 8 | [katex] t_{\text{up}} \approx 0.60 \text{ s} [/katex] |
| 9 | [katex] t_{\text{down}} \approx 1.15 \text{ s} [/katex] |
The time taken for the hockey puck to move up the distance d is approximately 0.60 seconds, while the time to slide down the same distance is approximately 1.15 seconds. Therefore, it takes longer for the puck to move down the distance d than to move up.
This result may seem counterintuitive, but it’s important to note that the initial conditions (starting speed and angle of incline) and the presence of friction significantly influence the motion. The initial upward speed allows the puck to cover the upward distance quickly, while friction continuously slows it down during both upward and downward motion, affecting the total time for each path.
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
A box is sliding down an incline at a constant speed of \( 2 \, \text{m/s} \). The angle of the incline is \( \theta \). The magnitude of the total of the opposing forces is \( 16 \, \text{N} \). Derive an equation for the force of gravity acting on the box.
A person is running on a track. Which of the following forces propels the runner forward?
A \(1 \, \text{kg}\) mass and an unknown mass \(M\) hang on opposite sides of a pulley suspended from the ceiling. When the masses are released, \(M\) accelerates downward at \(5 \, \text{m/s}^2\). Find the value of \(M\).
A \( 240 \) \( \text{kg} \) block is dropped from \( 3.0 \) meters onto a spring, compresses the spring and comes to rest.
A truck of mass 3500 kg hits the back of a small car of mass 1400 kg. Which car exerted more force on the other and why?
A block hangs from the ceiling by a massless rope. A \( 3.0 \, \text{kg} \) block is attached to the first block and hangs below it on another piece of massless rope. The tension in the top rope is \( 63.0 \, \text{N} \).
The speed of a \(40 \, \text{N}\) hockey puck, sliding across a level ice surface, decreases at the rate of \(0.61 \, \text{m/s}^2\). The coefficient of kinetic friction between the puck and ice is
A child slides down a slide with a \( 34^\circ \) incline, and at the bottom her speed is precisely half what it would have been if the slide had been frictionless. Calculate the coefficient of kinetic friction between the slide and the child.
A skateboarder coasts to a stop on a flat sidewalk. The net force acting on the skateboarder must be ____.
Only \( 1 \) non-zero force acts on an object. Can the object have \( 0 \) acceleration? Can it have \( 0 \) velocity? Explain.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?