What we found:


On a harsh winter day, a 1500 kg vehicle takes a circular banked exit ramp (radius R = 150 m; banking angle of 10 degrees) at a speed of 30 mph, since the speed limit is 35 mph. However, the exit ramp is completely iced up (= frictionless). To make matters worse, a wind is blowing parallel to the ramp in a downward direction. The wind exerts a force of 3000 N. Under these conditions, can the driver continue to follow a safe horizontal circle on the exit ramp and stay below the speed limit? To convert mph into m/s use 1 mi = 1607 m and 1 hr is 3600 s.

Read More >

A pulley system consists of two blocks of mass 5 kg and 10 kg, connected by a rope of negligible mass that passes over a pulley of radius 0.1 meters and mass 2 kg, as shown in the figure. The pulley is free to rotate about its axis. The system is released from rest, and the block of mass 10 kg starts to move downwards. Assuming that the coefficient of kinetic friction between the pulley and the rope is 0.2, and neglecting air resistance, determine the acceleration of the system, the tension in the rope, and the magnitude and direction of the frictional force exerted on the pulley.

Read More >

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.