AP Physics

Unit 4 - Energy

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 [katex]KE_{\text{initial}} = \frac{1}{2} m v^2[/katex] Calculate the initial kinetic energy of the vehicle using its speed before it halts. Here [katex]v = 12.3 \text{ m/s}[/katex].
2 [katex]W_{\text{friction}} = f_k \cdot d = \mu_k \cdot m \cdot g \cdot \cos(\theta) \cdot d[/katex] The work done by friction, where [katex] \mu_k = 0.650[/katex] is the coefficient of kinetic friction, [katex] g = 9.8 \text{ m/s}^2[/katex] is acceleration due to gravity, [katex] \theta = 18^\circ[/katex], and [katex]d[/katex] is the distance the vehicle slides.
3 [katex]W_{\text{gravity}} = m \cdot g \cdot \sin(\theta) \cdot d[/katex] The work done by gravity while the vehicle moves down the incline.
4 [katex]KE_{\text{initial}} = W_{\text{friction}} + W_{\text{gravity}}[/katex] By the work-energy principle, the initial kinetic energy is converted into work done against friction plus the work done by gravity.
5 [katex]\frac{1}{2} m v^2 = \mu_k mg\cos(\theta)d + mg\sin(\theta)d[/katex] Substitute expressions from steps 1, 2, and 3 into the work-energy equation.
6 [katex]d = \frac{\frac{1}{2} v^2}{\mu_k g \cos(\theta) + g \sin(\theta)}[/katex] Solve for [katex]d[/katex], distance the vehicle slides. Notice that mass [katex]m[/katex] cancels out.
7 [katex]d = \frac{\frac{1}{2} (12.3)^2}{0.650 \times 9.8 \times \cos(18^\circ) + 9.8 \times \sin(18^\circ)}[/katex] Substitute numerical values for [katex]v[/katex], [katex]\mu_k[/katex], [katex]g[/katex], and [katex]\theta[/katex] to find the value of [katex]d[/katex] that represents the distance the vehicle slides until it stops.
8 [katex]d  = 8.32 \,\text{m}[/katex] Calculated value.

To solve part b, look at the equation derived in step 6 of part a. Notice that the angle and distance traveled up the incline are inversely proportional. This means the greater the angle [katex] \theta [/katex] the shorter the distance traveled.

Step Derivation/Formula Reasoning
1 [katex]d’ = \frac{\frac{1}{2} v^2}{\mu_k g \cos(27^\circ) + g \sin(27^\circ)}[/katex] Recalculate the distance with the increased angle of [katex]1.5 \times 18^\circ = 27^\circ[/katex].
2 [katex]d’ = \frac{d}{\cos(27^\circ) + \tan(27^\circ) \cdot \sin(27^\circ)}[/katex] Using the previous formula of [katex]d[/katex], we express the new sliding distance [katex]d'[/katex] in terms of the old distance [katex]d[/katex].
3 [katex]d’ = 7.41 \, \text{meters}[/katex] At an angle of [katex]27^\circ[/katex] the vehicale would slide up 7.41 meters, which is less than the orginal dsitance of 8.32 meters.
3 [katex]\frac{d’}{d}[/katex] The ratio [katex]\frac{d’}{d}[/katex] shows how much further the vehicle would slide relative to [katex]d[/katex].
4 [katex]\frac{7.41}{8.32} = .89[/katex] Thus the new distance [katex]d’ = .89d[/katex]

Part (c):

Step Derivation/Formula Reasoning
1 [katex]W_{\text{gravity,up}} = -m \cdot g \cdot \sin(\theta) \cdot d[/katex] The work done by gravity as the vehicle slides up the incline is negative since gravity opposes the motion.
2 [katex]\frac{1}{2} m v^2 = \mu_k m g \cos(\theta) d – m g \sin(\theta) d[/katex] Work-energy principle applied while moving up. The kinetic energy has to overcome both friction and an upward gravity force.
3 [katex]d_{\text{up}} = \frac{\frac{1}{2} v^2}{\mu_k g \cos(\theta) – g \sin(\theta)}[/katex] Solve for the distance the vehicle would slide up the incline.
4 [katex]d_{\text{up}} < d[/katex] The distance [katex]d_{\text{up}}[/katex] will be lesser than [katex]d[/katex] since gravity now acts against the motion, reducing the sliding distance relative to sliding down.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

  1. [katex]d = 8.32 \,\text{meters}[/katex]
  2. [katex]d’ = .89d[/katex]

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.