0 attempts
0% avg
UBQ Credits
To solve part (a), calculate the work performed by the kinetic frictional force acting on the skis.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]KE_i = \frac{1}{2}mv_i^2[/katex] | Calculate the initial kinetic energy (KE) using the mass [katex] m = 58 \, \text{kg} [/katex] and the initial velocity [katex] v_i = 7.2 \, \text{m/s} [/katex]. |
2 | [katex]KE_i = \frac{1}{2} \times 58 \times (7.2)^2 = 1503.36 \, \text{J}[/katex] | Substitute the values into the kinetic energy formula. |
3 | [katex]KE_f = \frac{1}{2}mv_f^2[/katex] | Calculate the final kinetic energy using the final velocity [katex] v_f = 3.8 \, \text{m/s} [/katex]. |
4 | [katex]KE_f = \frac{1}{2} \times 58 \times (3.8)^2 = 418.76 \, \text{J}[/katex] | Substitute the values into the kinetic energy formula. |
5 | [katex]W_{\text{gravity}} = mgh [/katex] | Calculate the work done by gravity, where [katex] h = d \sin(\theta) [/katex] is the height gained climbing the incline. [katex] d = 2.3 \, \text{m} [/katex] and [katex] \theta = 28^\circ [/katex]. |
6 | [katex]h = 2.3 \sin(28^\circ) = 1.08 \, \text{m}[/katex] | Calculate the vertical height climbed using [katex] \sin(28^\circ) \approx 0.4695 [/katex]. |
7 | [katex]W_{\text{gravity}} = 58 \times 9.8 \times 1.080 = 614 \, \text{J}[/katex] | Substitute [katex] g = 9.8 \, \text{m/s}^2 [/katex]. |
8 | [katex] KE_i = KE_f + W_f + PE [/katex] | Place all energy transformation into a single conservation of energy equation: The initial kinetic energy transforms into the final kinetic energy, work done by friction, and the potential energy of the skier. |
9 | [katex]W_f = 1503.36 \, – \, 418.76 \, – \, 614 [/katex] | Plug in all values and solve for work done by friction [katex] W_f [/katex]. |
10 | [katex] W_f = 470.6 \, \text{J}[/katex] | The negative sign indicates that the work done by friction is in the direction opposite to the motion. |
To solve part (b), determine the magnitude of the kinetic frictional force.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]W = f_k \times d \times \cos(\theta)[/katex] | Work done by a force [katex] f_k [/katex] over a distance [katex] d [/katex], where [katex] \theta [/katex] is the angle between the force and the displacement (which in the case of friction, is [katex]180^\circ[/katex]). |
2 | [katex] 470.6 = -f_k \times 2.3 \times \cos(180^\circ)[/katex] | Substitute the work calculated from part (a) and the distance [katex]2.3 \, \text{m}[/katex]. [katex] \cos(180^\circ) = -1 [/katex]. |
3 | [katex] -470.6 = f_k \times 2.3[/katex] | Simplify the equation. |
4 | [katex]f_k = \frac{-470.6}{2.3}[/katex] | Solve for [katex]f_k[/katex]. |
5 | [katex]f_k = -204.6 \, \text{N}[/katex] | The magnitude of the kinetic frictional force. |
Phy can also check your working. Just snap a picture!
A 0.5 mm wire made of carbon and manganese can just barely support the weight of a 70.0 kg person that is holding on vertically. Suppose this wire is used to lift a 45.0 kg load. What maximum vertical acceleration can be achieved without breaking the wire?
What is weight of a person who has a mass of 75 kg?
On a harsh winter day, a 1500 kg vehicle takes a circular banked exit ramp (radius R = 150 m; banking angle of 10 degrees) at a speed of 30 mph, since the speed limit is 35 mph. However, the exit ramp is completely iced up (= frictionless). To make matters worse, a wind is blowing parallel to the ramp in a downward direction. The wind exerts a force of 3000 N. Under these conditions, can the driver continue to follow a safe horizontal circle on the exit ramp and stay below the speed limit? To convert mph into m/s use 1 mi = 1607 m and 1 hr is 3600 s.
A 25 g steel ball is attached to the top of a 24-cm-diameter vertical wheel. Starting from rest, the wheel accelerates at [katex] 470 \, \frac{rad}{s^2}[/katex]. The ball is released after [katex]\frac{3}{4} [/katex] of a revolution. How high does it go above the center of the wheel?
A horizontal 300 N force pushes a 40 kg object across a horizontal 10 meter frictionless surface. After this, the block slides up a 20° incline. Assuming the incline has a coefficient of kinetic friction of 0.4, how far along the incline with the object slide?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
[katex]\Delta x = v_i t + \frac{1}{2} at^2[/katex] | [katex]F = ma[/katex] |
[katex]v = v_i + at[/katex] | [katex]F_g = \frac{G m_1m_2}{r^2}[/katex] |
[katex]a = \frac{\Delta v}{\Delta t}[/katex] | [katex]f = \mu N[/katex] |
[katex]R = \frac{v_i^2 \sin(2\theta)}{g}[/katex] |
Circular Motion | Energy |
---|---|
[katex]F_c = \frac{mv^2}{r}[/katex] | [katex]KE = \frac{1}{2} mv^2[/katex] |
[katex]a_c = \frac{v^2}{r}[/katex] | [katex]PE = mgh[/katex] |
[katex]KE_i + PE_i = KE_f + PE_f[/katex] |
Momentum | Torque and Rotations |
---|---|
[katex]p = m v[/katex] | [katex]\tau = r \cdot F \cdot \sin(\theta)[/katex] |
[katex]J = \Delta p[/katex] | [katex]I = \sum mr^2[/katex] |
[katex]p_i = p_f[/katex] | [katex]L = I \cdot \omega[/katex] |
Simple Harmonic Motion |
---|
[katex]F = -k x[/katex] |
[katex]T = 2\pi \sqrt{\frac{l}{g}}[/katex] |
[katex]T = 2\pi \sqrt{\frac{m}{k}}[/katex] |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
UBQ credits are specifically used to grade your FRQs and GQs.
You can still view questions and see answers without credits.
Submitting an answer counts as 1 attempt.
Seeing answer or explanation counts as a failed attempt.
Lastly, check your average score, across every attempt, in the top left.
MCQs are 1 point each. GQs are 1 point. FRQs will state points for each part.
Phy can give partial credit for GQs & FRQs.
Phy sees everything.
It customizes responses, explanations, and feedback based on what you struggle with. Try your best on every question!
Understand you mistakes quicker.
For GQs and FRQs, Phy provides brief feedback as to how you can improve your answer.
Aim to increase your understadning and average score with every attempt!
10 Free Credits To Get You Started
*Phy Pro members get unlimited credits
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.