0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]T_{\text{max}} = mg[/katex] | The maximum tension [katex]T_{\text{max}}[/katex] that the wire can withstand is equal to the weight of the heaviest load it can support without breaking. Here, [katex]m = 70.0 \, \text{kg}[/katex] (mass of the person) and [katex]g = 9.8 \, \text{m/s}^2[/katex] (acceleration due to gravity). |
2 | [katex]T_{\text{max}} = 70.0 \, \text{kg} \cdot 9.8 \, \text{m/s}^2[/katex] | Calculate the maximum tension [katex]T_{\text{max}}[/katex] using the product of mass and acceleration due to gravity. |
3 | [katex]T_{\text{max}} = 686 \, \text{N}[/katex] | Performing the multiplication yields the maximum tension value. |
4 |
[katex]T = m_{\text{load}}(g + a)[/katex] |
Using netwons 2nd law, add all the forces acting on the load being lifted. In this case the Tension and weight act in opposite directions, thus [katex]T – m_{\text{load}}g = m_{\text{load}}a[/katex]. Re-arrange the equation for [katex]T[/katex] and factor out [katex]m_{\text{load}}[/katex] |
5 | [katex]686 \, \text{N} = 45.0 \, \text{kg} \cdot (9.8 \, \text{m/s}^2 + a)[/katex] | Since the wire can just barely support [katex]686 \, \text{N}[/katex], set the tension required to lift the load equal to this maximum. |
6 | [katex]9.8 \, \text{m/s}^2 + a = \frac{686 \, \text{N}}{45.0 \, \text{kg}}[/katex] | Divide both sides by the mass of the load to solve for the acceleration. |
7 | [katex]a = \frac{686 \, \text{N}}{45.0 \, \text{kg}} – 9.8 \, \text{m/s}^2[/katex] | Solve for [katex]a[/katex] by subtracting gravity’s acceleration from the result of the division. |
8 | [katex]a \approx 5.4 \, \text{m/s}^2[/katex] | Calculate the value of [katex]a[/katex]. This is the maximum vertical acceleration that can be achieved without breaking the wire. |
Just ask: "Help me solve this problem."
On a harsh winter day, a 1500 kg vehicle takes a circular banked exit ramp (radius R = 150 m; banking angle of 10 degrees) at a speed of 30 mph, since the speed limit is 35 mph. However, the exit ramp is completely iced up (= frictionless). To make matters worse, a wind is blowing parallel to the ramp in a downward direction. The wind exerts a force of 3000 N. Under these conditions, can the driver continue to follow a safe horizontal circle on the exit ramp and stay below the speed limit? To convert mph into m/s use 1 mi = 1607 m and 1 hr is 3600 s.
A 5.5 kg block slides down a 30º incline that is 2.2 m long. If µ = 0.20, what is the acceleration of the block?
A brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it?
The alarm at a fire station rings and a 79.34-kg fireman, starting from rest, slides down a pole to the floor below (a distance of 4.20 m). Just before landing, his speed is 1.36 m/s. What is the magnitude of the kinetic frictional force exerted on the fireman as he slides down the pole?
A 1.5 kg block is pushed to the right with just enough force to get it to move. The block is pushed for five seconds with this constant force, then the force is released and the block slides to a stop. If the coefficient of kinetic friction is 0.300 and the coefficient of static friction is 0.400. Calculate the amount of time that passes from when the force is applied to when the block stops.
[katex]a \approx 5.4 \, \text{m/s}^2[/katex]
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.