A karate master is about to split a piece of wood with her hand. Select all she must do in order to deliver the maximum force to split the wood.

- Scroll Horiztonally

This short article explains different ways impact forces are manipulated though either time, impulse or external forces.

Solve. Take a picture. Upload. Phy will grade your working.

Ask Phy About This MCQ

Phy Beta V5 (1.28.24) – Systems Operational.

- Statistics

A block of mass m is moving on a horizontal frictionless surface with a speed v_0 as it approaches a block of mass 2m which is at rest and has an ideal spring attached to one side.

When the two blocks collide, the spring is completely compressed and the two blocks momentarily move at the same speed, and then separate again, each continuing to move.

A 70 kg woman and her 35 kg son are standing at rest on an ice rink, as shown above. They push against each other for a time of 0.60 s, causing them to glide apart. The speed of the woman immediately after they separate is 0.55 m/s.

Assume that during the push, friction is negligible compared with the forces the people exert on each other.

- Calculate the initial speed of the son after the push.
- Calculate the magnitude of the average force exerted on the son by the mother during the push.
- How do the magnitude and direction of the average force exerted on the mother by the son during the push compare with those of the average force exerted on the son by the mother? Justify your answer.
- After the initial push, the friction that the ice exerts cannot be considered negligible, and the mother comes to rest after moving a distance of 7.0 m across the ice. If their coefficients of friction are the same, how far does the son move after the push?

_{3} = 1.0, m_{2} = 2.0, and m_{1} = 4.0 kilograms are connected by massless strings, one of which passes over a frictionless pulley of negligible mass, as shown above.

A linear spring of negligible mass requires a force of 18.0 N to cause its length to increase by 1.0 cm.

A sphere of mass 75.0 g is then attached to one end of the spring. The distance between the center of the sphere M and the other end P of the un-stretched spring is 25.0 cm.

Then the sphere begins rotating at constant speed in a horizontal circle around the center P. The distance P and M increases to 26.5

^{2} and is lifted through a distance of 11 m.

^{5} N is needed to overcome static friction in the train’s wheels. If the coefficient of static friction is 0.741, what is the train’s mass?

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

What went wrong? Found something incorrect? OR just want to tell us to add/improve something on this page? We listen to all your feedback!

You must be signed in to leave feedback

Kinematics | Forces |
---|---|

\Delta x = v_i t + \frac{1}{2} at^2 | F = ma |

v = v_i + at | F_g = \frac{G m_1m_2}{r^2} |

a = \frac{\Delta v}{\Delta t} | f = \mu N |

R = \frac{v_i^2 \sin(2\theta)}{g} |

Circular Motion | Energy |
---|---|

F_c = \frac{mv^2}{r} | KE = \frac{1}{2} mv^2 |

a_c = \frac{v^2}{r} | PE = mgh |

KE_i + PE_i = KE_f + PE_f |

Momentum | Torque and Rotations |
---|---|

p = m v | \tau = r \cdot F \cdot \sin(\theta) |

J = \Delta p | I = \sum mr^2 |

p_i = p_f | L = I \cdot \omega |

Simple Harmonic Motion |
---|

F = -k x |

T = 2\pi \sqrt{\frac{l}{g}} |

T = 2\pi \sqrt{\frac{m}{k}} |

Constant | Description |
---|---|

g | Acceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface |

G | Universal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2 |

\mu_k and \mu_s | Coefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion. |

k | Spring constant, in \text{N/m} |

M_E = 5.972 \times 10^{24} , \text{kg} | Mass of the Earth |

M_M = 7.348 \times 10^{22} , \text{kg} | Mass of the Moon |

M_M = 1.989 \times 10^{30} , \text{kg} | Mass of the Sun |

Variable | SI Unit |
---|---|

s (Displacement) | \text{meters (m)} |

v (Velocity) | \text{meters per second (m/s)} |

a (Acceleration) | \text{meters per second squared (m/s}^2\text{)} |

t (Time) | \text{seconds (s)} |

m (Mass) | \text{kilograms (kg)} |

Variable | Derived SI Unit |
---|---|

F (Force) | \text{newtons (N)} |

E, PE, KE (Energy, Potential Energy, Kinetic Energy) | \text{joules (J)} |

P (Power) | \text{watts (W)} |

p (Momentum) | \text{kilogram meters per second (kgm/s)} |

\omega (Angular Velocity) | \text{radians per second (rad/s)} |

\tau (Torque) | \text{newton meters (Nm)} |

I (Moment of Inertia) | \text{kilogram meter squared (kgm}^2\text{)} |

f (Frequency) | \text{hertz (Hz)} |

General Metric Conversion Chart

Conversion Example

Example of using unit analysis: Convert 5 kilometers to millimeters.

Start with the given measurement:

`\text{5 km}`

Use the conversion factors for kilometers to meters and meters to millimeters:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}`

Perform the multiplication:

`\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}`

Simplify to get the final answer:

`\boxed{5 \times 10^6 \, \text{mm}}`

Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|

Pico- | p | 10^{-12} | 0.000000000001 |

Nano- | n | 10^{-9} | 0.000000001 |

Micro- | µ | 10^{-6} | 0.000001 |

Milli- | m | 10^{-3} | 0.001 |

Centi- | c | 10^{-2} | 0.01 |

Deci- | d | 10^{-1} | 0.1 |

(Base unit) | – | 10^{0} | 1 |

Deca- or Deka- | da | 10^{1} | 10 |

Hecto- | h | 10^{2} | 100 |

Kilo- | k | 10^{3} | 1,000 |

Mega- | M | 10^{6} | 1,000,000 |

Giga- | G | 10^{9} | 1,000,000,000 |

Tera- | T | 10^{12} | 1,000,000,000,000 |

- Some answers may be slightly off by 1% depending on rounding, etc.
- Answers will use different values of gravity. Some answers use 9.81 m/s
^{2}, and other 10 m/s^{2 }for calculations. - Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
- Bookmark questions that you can’t solve so you can come back to them later.
- Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!