0 attempts
0% avg
UBQ Credits
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2[/katex] | Conservation of momentum |
2 | [katex]4,kg \cdot 10,m/s + 7,kg \cdot 0,m/s = 4,kg \cdot v_{1x} + 7,kg \cdot 2,m/s \cdot \cos(22^\circ)[/katex] | Plugging in given values and decomposing the 7 kg mass’s velocity into horizontal component. |
3 | [katex]40 = 4v_{1x} + 13.08[/katex] | Calculating the horizontal momentum contribution from the 7 kg mass post-collision. |
4 | [katex]4v_{1x} = 26.92[/katex] | Solve for the 4 kg mass’s horizontal velocity component. |
5 | [katex]v_{1x} = 6.73,m/s[/katex] | Calculating the horizontal velocity of the 4 kg mass. |
6 | [katex]m_1 u_{1y} + m_2 u_{2y} = m_1 v_{1y} + m_2 v_{2y}[/katex] | Conservation of momentum in the vertical direction. Since the initial vertical momentum is 0, the final combined vertical momentum must also be 0. |
7 | [katex]0 = 4,kg \cdot v_{1y} + 7,kg \cdot 2,m/s \cdot \sin(22^\circ)[/katex] | Recognizing that initial vertical velocities are 0 and calculating the vertical component for the 7 kg mass. |
8 | [katex]v_{1y} = -1.04,m/s[/katex] | Calculating the vertical velocity of the 4 kg mass (negative indicates opposite direction to the 7 kg mass’s vertical component). |
9 | [katex]v_1 = \sqrt{v_{1x}^2 + v_{1y}^2}[/katex] and [katex]\theta = \arctan\left(\frac{v_{1y}}{v_{1x}}\right)[/katex] | Combining horizontal and vertical components to find magnitude and direction of the 4 kg mass’s velocity. |
10 | [katex]v_1 \approx \sqrt{6.73^2 + (-1.04)^2}[/katex] | Plugging in horizontal and vertical components. |
11 | [katex]v_1 \approx 6.81,m/s[/katex] | Calculating the magnitude of velocity. |
12 | [katex]\theta \approx \arctan\left(\frac{-1.04}{6.73}\right)[/katex] | Calculating the direction of the velocity. |
13 | [katex]\theta \approx -8.8^\circ[/katex] | Determining the angle below the horizontal for the 4 kg mass’s velocity. |
Just ask: "Help me solve this problem."
A 1200-kg car moving at 15.6 m/s suddenly collides with a stationary car of mass 1500 kg. If the two vehicles lock together, what is their combined velocity immediately after the collision?
A moderate force will break an egg. However, an egg dropped on the road usually breaks, while one dropped on the grass usually does not break because for the egg dropped on the grass:
A 2,000 kg car collides with a stationary 1,000 kg car. Afterwards, they slide 6 m before coming to a stop. The coefficient of friction between the tires and the road is 0.7. Find the initial velocity of the 2,000 kg car before the collision?
Two people, one of mass \( 88 \) \( \text{kg} \) and the other of mass \( 55 \) \( \text{kg} \), sit in a rowboat of mass \( 70 \) \( \text{kg} \). With the boat initially at rest, the two people, who have been sitting at opposite ends of the boat \( 3.1 \) \( \text{m} \) apart from each other, now exchange seats.
You are lying in bed and want to shut your bedroom door. You have a bouncy “superball” and a blob of clay, both with the same mass \( m \). Which one would be more effective to throw at your door to close it?
6.81 m/s at 8.8° above the horizontal
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.