AP Physics

Unit 2 - Linear Forces

Intermediate

Mathematical

GQ

You're a Phy Pro Member

Supercharge UBQ with

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 F_{\text{friction}} = \mu F_{\text{normal}} The force needed to set the train in motion, is the force same as overcoming static friction. (F_{\text{friction}}) is the product of the coefficient of static friction (\mu) and the normal force (F_{\text{normal}}).
2 \mu = 0.741
F_{\text{friction}} = 1.13 \times 10^{5} \, \text{N}
The coefficient of static friction and the force to overcome static friction are given.
3 F_{\text{normal}} = \frac{F_{\text{friction}}}{\mu} Rearrange the friction formula to solve for the normal force.
4 F_{\text{normal}} = \frac{1.13 \times 10^{5} \, \text{N}}{0.741} Substitute the known values into the rearranged equation.
5 F_{\text{normal}} = 1.52456 \times 10^{5} \, \text{N} Calculate the normal force.
6 F_{\text{normal}} = mg Note that the normal force acts opposite to the weight of the train. thus can also set the normal force equal to the weight of the train.
7 m = \frac{F_{\text{normal}}}{g} Rearrange the equation to solve for the mass (m).
8 m = \frac{1.524 \times 10^{5} \, \text{N}}{9.81 \, \text{m/s}^2} Substitute the calculated normal force from step 5 to find the mass.
9 m \approx 1.55 \times 10^4 \, \text{kg} The approximate mass of the train calculated from the given forces and coefficients.

Need Help? Ask Phy To Explain This Problem

Phy can also check your working. Just snap a picture!

Simple Chat Box
NEW Smart Actions

Topics in this question

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

m \approx 1.55 \times 10^4 \, \text{kg}

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
Made By Nerd-Notes.com
KinematicsForces
\Delta x = v_i t + \frac{1}{2} at^2F = ma
v = v_i + atF_g = \frac{G m_1m_2}{r^2}
a = \frac{\Delta v}{\Delta t}f = \mu N
R = \frac{v_i^2 \sin(2\theta)}{g} 
Circular MotionEnergy
F_c = \frac{mv^2}{r}KE = \frac{1}{2} mv^2
a_c = \frac{v^2}{r}PE = mgh
 KE_i + PE_i = KE_f + PE_f
MomentumTorque and Rotations
p = m v\tau = r \cdot F \cdot \sin(\theta)
J = \Delta pI = \sum mr^2
p_i = p_fL = I \cdot \omega
Simple Harmonic Motion
F = -k x
T = 2\pi \sqrt{\frac{l}{g}}
T = 2\pi \sqrt{\frac{m}{k}}
ConstantDescription
gAcceleration due to gravity, typically 9.8 , \text{m/s}^2 on Earth’s surface
GUniversal Gravitational Constant, 6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2
\mu_k and \mu_sCoefficients of kinetic (\mu_k) and static (\mu_s) friction, dimensionless. Static friction (\mu_s) is usually greater than kinetic friction (\mu_k) as it resists the start of motion.
kSpring constant, in \text{N/m}
M_E = 5.972 \times 10^{24} , \text{kg} Mass of the Earth
M_M = 7.348 \times 10^{22} , \text{kg} Mass of the Moon
M_M = 1.989 \times 10^{30} , \text{kg} Mass of the Sun
VariableSI Unit
s (Displacement)\text{meters (m)}
v (Velocity)\text{meters per second (m/s)}
a (Acceleration)\text{meters per second squared (m/s}^2\text{)}
t (Time)\text{seconds (s)}
m (Mass)\text{kilograms (kg)}
VariableDerived SI Unit
F (Force)\text{newtons (N)}
E, PE, KE (Energy, Potential Energy, Kinetic Energy)\text{joules (J)}
P (Power)\text{watts (W)}
p (Momentum)\text{kilogram meters per second (kgm/s)}
\omega (Angular Velocity)\text{radians per second (rad/s)}
\tau (Torque)\text{newton meters (Nm)}
I (Moment of Inertia)\text{kilogram meter squared (kgm}^2\text{)}
f (Frequency)\text{hertz (Hz)}

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: \text{5 km}

  2. Use the conversion factors for kilometers to meters and meters to millimeters: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}

  3. Perform the multiplication: \text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}

  4. Simplify to get the final answer: \boxed{5 \times 10^6 \, \text{mm}}

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

10^{-12}

Nano-

n

10^{-9}

Micro-

µ

10^{-6}

Milli-

m

10^{-3}

Centi-

c

10^{-2}

Deci-

d

10^{-1}

(Base unit)

10^{0}

Deca- or Deka-

da

10^{1}

Hecto-

h

10^{2}

Kilo-

k

10^{3}

Mega-

M

10^{6}

Giga-

G

10^{9}

Tera-

T

10^{12}

  1. Some answers may be slightly off by 1% depending on rounding, etc.
  2. Answers will use different values of gravity. Some answers use 9.81 m/s2, and other 10 m/s2 for calculations.
  3. Variables are sometimes written differently from class to class. For example, sometime initial velocity v_i is written as u ; sometimes \Delta x is written as s .
  4. Bookmark questions that you can’t solve so you can come back to them later. 
  5. Always get help if you can’t figure out a problem. The sooner you can get it cleared up the better chances of you not getting it wrong on a test!

Phy Pro

The most advanced version of Phy. Currently 50% off, for early supporters.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

Error Report

Sign in before submitting feedback.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.