0 attempts
0% avg
UBQ Credits
First find the pushing force, which equal to the maximum force of static friction.
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]F_{\text{static max}} = \mu_{s} F_{\text{normal}}[/katex] | Maximum static friction force, where [katex]\mu_{s}[/katex] is the coefficient of static friction. |
2 | [katex]F_{\text{normal}} = mg[/katex] | Normal force equals weight for horizontal motion. |
3 | [katex]F_{\text{static max}} = \mu_{s} mg[/katex] | Substituting [katex]F_{\text{normal}}[/katex]. |
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]F_{\text{net}} = F_{\text{push}} – F_{\text{kinetic}}[/katex] | Net force is the difference between pushing force and kinetic friction. |
2 | [katex]F_{\text{push}} = \mu_{s} F_{\text{normal}}[/katex] | Pushing force equal to maximum static friction. |
3 | [katex]F_{\text{kinetic}} = \mu_{k} F_{\text{normal}}[/katex] | Kinetic friction force. |
4 | [katex]F_{\text{net}} = \mu_{s} mg – \mu_{k} mg[/katex] | Substituting values for [katex]F_{\text{push}}[/katex] and [katex]F_{\text{kinetic}}[/katex]. |
5 | [katex]F_{\text{net}} = \mu_{s} mg – \mu_{k} mg = ma [/katex] | Set net force equation equal to ma. Then solve for a (acceleration) |
6 | a = 1 m/s2 | Plug in values and solve |
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]v = u + \frac{F_{\text{net}}}{m}t[/katex] | Kinematic equation for velocity. Note F/m is the acceleration (1 m/s2 ) from above. |
2 | [katex]v = 0 + \frac{(\mu_{s} – \mu_{k}) mg}{m} \times 5, \text{s}[/katex] | Initial velocity [katex]u = 0[/katex]; substituting [katex]F_{\text{net}}[/katex] and [katex]t[/katex]. |
3 | [katex]v = 5 m/s [/katex] | Plug in values and find the velocity at the end of the 5 second push. |
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]0 = v – \mu_{k} gt_{\text{stop}}[/katex] | Final velocity [katex]0[/katex] when stopped, [katex]v[/katex] is final speed after push (5 m/s as found above). |
2 | [katex]t_{\text{stop}} = \frac{v}{\mu_{k} g}[/katex] | Solving for time to stop [katex]t_{\text{stop}}[/katex]. |
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]t_{\text{total}} = t_{\text{push}} + t_{\text{stop}}[/katex] | Sum of time with force applied and time to stop. |
Let’s calculate [katex]t_{\text{total}}[/katex]. The calculations yield the following results:
Just ask: "Help me solve this problem."
A skier with a mass of 58 kg glides up a snowy incline that forms an angle of 28 degrees with the horizontal. The skier initially moves at a speed of 7.2 m/s. After traveling a distance of 2.3 meters up the slope, the skier’s speed reduces to 3.8 m/s.
A 1509 g wood block is being pulled by the force meter at a constant velocity. Using the graph below find:
A truck of mass 3500 kg hits the back of a small car of mass 1400 kg. Which car exerted more force on the other and why?
A 1kg and unknown mass (M) hangs on opposite sides of the pulley suspended from the ceiling. When the masses are released, M accelerates down at 5 m/s². What is M?
Three blocks of masses m3 = 1.0, m2 = 2.0, and m1 = 4.0 kilograms are connected by massless strings, one of which passes over a frictionless pulley of negligible mass, as shown above.
6.67 seconds
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.