0 attempts
0% avg
UBQ Credits
Objective: Determine whether it takes longer for the hockey puck to slide up or down a distance d on an incline with kinetic friction μk=0.4, given an initial speed of 5 m/s.
Analysis for Upward Motion:
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]a_{\text{up}} = -g(\sin(\theta) + \mu_k \cos(\theta))[/katex] | Acceleration is due to gravity and kinetic friction opposing the motion. |
2 | [katex]v^2 = u^2 + 2a_{\text{up}}d[/katex] | Use the kinematic equation for final velocity. v =0 m/s at the top of incline. |
3 | [katex]t_{\text{up}} = \frac{v – u}{a_{\text{up}}}[/katex] | Time taken tup is found using the kinematic equation for time. |
4 | Substitute and solve for tup. [katex]u = 5 \text{ m/s}[/katex], [katex]\theta = 30^\circ[/katex], [katex]\mu_k = 0.4[/katex] | Calculate time up. |
Analysis for Downward Motion:
Step | Formula Derivation | Reasoning |
---|---|---|
5 | [katex]a_{\text{down}} = g(\sin(\theta) – \mu_k \cos(\theta))[/katex] | Acceleration is due to gravity assisted by friction. |
6 | [katex]t_{\text{down}} = \sqrt{\frac{2d}{a_{\text{down}}}}[/katex] | Time taken tdown using the kinematic equation for constant acceleration. |
7 | Substitute and solve for tdown. [katex]u = 0 \text{ m/s}[/katex] at the peak, [katex]\theta = 30^\circ[/katex], [katex]\mu_k = 0.4[/katex] | Calculate time down. |
Calculating the time for both upward and downward motions:
Step | Result |
---|---|
8 | [katex] t_{\text{up}} \approx 0.60 \text{ s} [/katex] |
9 | [katex] t_{\text{down}} \approx 1.15 \text{ s} [/katex] |
The time taken for the hockey puck to move up the distance d is approximately 0.60 seconds, while the time to slide down the same distance is approximately 1.15 seconds. Therefore, it takes longer for the puck to move down the distance d than to move up.
This result may seem counterintuitive, but it’s important to note that the initial conditions (starting speed and angle of incline) and the presence of friction significantly influence the motion. The initial upward speed allows the puck to cover the upward distance quickly, while friction continuously slows it down during both upward and downward motion, affecting the total time for each path.
Just ask: "Help me solve this problem."
Three identical blocks are being pulled or pushed across a rough horizontal surface by force of identical magnitude F, as shown in the drawing below. Rank the kinetic frictional forces that act on the blocks from smallest to greatest.
A 5.5 kg block slides down a 30º incline that is 2.2 m long. If µ = 0.20, what is the acceleration of the block?
A person with a weight of \( 600 \) \( \text{N} \) stands on a scale in an elevator. What is the acceleration of the elevator when the scale reads \( 900 \) \( \text{N} \)?
The steepest street in the world is Baldwin Street in Dunedin, New Zealand. It has an inclination angle of \( 38.0^\circ \) with respect to the horizontal. Suppose a wooden crate with a mass of \( 25.0 \) \( \text{kg} \) is placed on Baldwin Street. An additional force of \( 59 \) \( \text{N} \) must be applied to the crate perpendicular to the pavement in order to hold the crate in place. If the coefficient of static friction between the crate and the pavement is \( 0.599 \), what is the magnitude of the frictional force?
A spacecraft somewhere in between the earth and the moon experiences 0 net force acting on it. This is because the earth and the moon pull the spacecraft in equal but opposite directions. Find the distance D away from Earth, such that the spacecraft experiences zero net force. The distance between the Moon and Earth is ~3.844 x 108 m.
NOTE: You may need the mass of the earth and moon. You can find this in the formula table.
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.