0 attempts
0% avg
UBQ Credits
Objective: Calculate the magnitude of the kinetic frictional force exerted on the fireman as he slides down the pole.
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]v^2 = u^2 + 2as[/katex] | Kinematic equation relating initial velocity ([katex]u[/katex]), final velocity ([katex]v[/katex]), acceleration ([katex]a[/katex]), and displacement ([katex]s[/katex]). |
2 | [katex]a = \frac{v^2 – u^2}{2s}[/katex] | Solve for acceleration ([katex]a[/katex]). |
3 | [katex]a = \frac{(1.36\text{ m/s})^2 – 0}{2 \times 4.20\text{ m}}[/katex] | Substitute [katex]u = 0[/katex] (starting from rest), [katex]v = 1.36\text{ m/s}[/katex], and [katex]s = 4.20\text{ m}[/katex]. |
4 | [katex]a = \frac{1.8496\text{ m}^2/\text{s}^2}{8.40\text{ m}}[/katex] | Calculate the numerator. |
5 | [katex]a = 0.22\text{ m/s}^2[/katex] | Calculate the acceleration. |
6 | [katex]F_{\text{net}} = ma[/katex] | Newton’s second law. |
7 | [katex]F_{\text{net}} = 79.34\text{ kg} \times 0.22\text{ m/s}^2[/katex] | Substitute the mass ([katex]m[/katex]) and acceleration ([katex]a[/katex]). |
8 | [katex]F_{\text{net}} = 17.45\text{ N}[/katex] | Calculate the net force. |
9 | [katex]F_{\text{friction}} = mg – F_{\text{net}}[/katex] | The frictional force is the difference between gravitational force and net force. |
10 | [katex]F_{\text{friction}} = 79.34\text{ kg} \times 9.8\text{ m/s}^2 – 17.45\text{ N}[/katex] | Substitute gravitational acceleration ([katex]g[/katex]) and net force ([katex]F_{\text{net}}[/katex]). |
11 | [katex]F_{\text{friction}} = 777.532\text{ N} – 17.45\text{ N}[/katex] | Calculate the gravitational force. |
12 | [katex]F_{\text{friction}} = 760\text{ N}[/katex] | Calculate the frictional force. |
Final answer for the magnitude of the kinetic frictional force: [katex]\boxed{F_{\text{friction}} = 760\text{ N}}[/katex]
Just ask: "Help me solve this problem."
A space probe far from the Earth is travelling at \( 14.8 \) \( \text{km s}^{-1} \). It has mass \( 1\,312 \) \( \text{kg} \). The probe fires its rockets to give a constant thrust of \( 156 \) \( \text{kN} \) for \( 220. \) \( \text{s} \). It accelerates in the same direction as its initial velocity. In this time it burns \( 150. \) \( \text{kg} \) of fuel.
Calculate the final speed of the space probe in \( \text{km s}^{-1} \).
For linear motion the term “inertia” refers to the same physical concept of
If you stand on a bathroom scale in a moving elevator, does its reading change?
A student presses a \( 0.5 \) \( \text{kg} \) book against the wall. If the \( \mu_s \) between the book and the wall is \( 0.2 \), what force must the student apply to hold the book in place?
A car travels east at a steady \( 30 \) \( \text{m/s} \) for \( 5 \) \( \text{s} \). What is its acceleration during this motion?
760 N
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.