0 attempts
0% avg
UBQ Credits
| Step | Formula Derivation | Reasoning |
|---|---|---|
| 1 | [katex] E_{\text{total}} = E_{\text{kinetic}} + E_{\text{potential}} [/katex] | Total mechanical energy is the sum of kinetic and potential energy. |
| 2 | [katex] E_{\text{kinetic}} = \frac{1}{2}mv^2 [/katex] | Kinetic energy formula, where [katex] E_{\text{kinetic}} [/katex] is kinetic energy, [katex] m [/katex] is mass, and [katex] v [/katex] is velocity. |
| 3 | [katex] E_{\text{potential}} = mgh [/katex] | Potential energy formula, where [katex] E_{\text{potential}} [/katex] is potential energy, [katex] h [/katex] is height, and [katex] g [/katex] is gravitational acceleration. |
| 4 | At the top, [katex] E_{\text{total}} = E_{\text{potential}} [/katex] | Initially, all energy is potential energy since velocity is zero. |
| 5 | At the bottom, [katex] E_{\text{total}} = E_{\text{kinetic}} [/katex] | At the bottom, all energy is converted to kinetic energy, assuming negligible air resistance. |
| 6 | [katex] mgh = \frac{1}{2}mv^2 [/katex] | Equating potential energy at the top with kinetic energy at the bottom. |
| 7 | [katex] 2gh = v^2 [/katex] | Cancel [katex] m [/katex] and rearrange the equation. |
| 8 | [katex] v = \sqrt{2gh} [/katex] | Take the square root to find [katex] v [/katex]. |
| 9 | [katex] v_A = \sqrt{2gH} [/katex] | Apply the formula to ball A, dropped from height [katex] H [/katex]. |
| 10 | [katex] v_B = \sqrt{2g \cdot 3.5H} [/katex] | Apply the formula to ball B, dropped from height [katex] 3.5H [/katex]. |
| 11 | [katex] \frac{v_A}{v_B} = \frac{\sqrt{2gH}}{\sqrt{7gH}} [/katex] | Compare the velocities of the two balls. |
| 12 | [katex] \boxed{\frac{v_A}{v_B} = \sqrt{\frac{2}{7}}} [/katex] | Simplify to find the ratio. |
The derivation uses energy principles to arrive at the final velocity formula, and the ratio of velocities of ball A to ball B is [katex] \sqrt{\frac{2}{7}} [/katex].
Just ask: "Help me solve this problem."
| Speed | \( 10 \, \mathrm{m/s} \) | \( 20 \, \mathrm{m/s} \) | \( 30 \, \mathrm{m/s} \) |
| Braking Distance | \( 6.1 \, \mathrm{m} \) | \( 23.9 \, \mathrm{m} \) | \( 53.5 \, \mathrm{m} \) |
A car of mass \( 1500 \, \mathrm{kg} \) is traveling at one of the speeds listed when the brakes are first applied. Using the data above, what is the magnitude of the average braking force required to stop the car?
A spring stretches \( 8.0 \) \( \text{cm} \) when a \( 13 \) \( \text{N} \) force is applied. How far does it stretch when a \( 26 \) \( \text{N} \) force is applied?
A horizontal force of \(110 \, \text{N}\) is applied to a \(12 \, \text{kg}\) object, moving it \(6 \, \text{m}\) on a horizontal surface where the kinetic friction coefficient is \(\mu_k = 0.25\). The object then slides up a \(17^\circ\) inclined plane. Assuming the \(110 \, \text{N}\) force is no longer acting on the incline, and the coefficient of kinetic friction there is \(\mu_k = 0.45\), calculate the distance the object will slide on the incline.
A box of mass \( 20 \) \( \text{kg} \) moves to the right on a horizontal frictionless surface with a speed of \( 4.0 \) \( \text{m/s} \). The box collides with and remains attached to one end of a spring of negligible mass whose other end is fixed to a wall. After the collision, the spring compresses a maximum distance of \( 0.50 \) \( \text{m} \), and the box then oscillates back and forth.
A box of mass \(m\) is initially at rest at the top of a ramp that is at an angle \(\theta\) with the horizontal. The block is at a height \(h\) and length \(L\) from the bottom of the ramp. The coefficient of kinetic friction between the block and the ramp is \(\mu\). What is the kinetic energy of the box at the bottom of the ramp?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?