0 attempts
0% avg
UBQ Credits
Step | Formula Derivation | Reasoning |
---|---|---|
1 | [katex]F_{\text{parallel}} = mg\sin(\theta)[/katex] | Force parallel to the incline, where [katex]m[/katex] is mass, [katex]g[/katex] is acceleration due to gravity, and [katex]\theta[/katex] is the incline angle. |
2 | [katex]F_{\text{normal}} = mg\cos(\theta)[/katex] | Normal force, perpendicular to the incline. |
3 | [katex]F_{\text{friction}} = \mu_k F_{\text{normal}}[/katex] | Frictional force, where [katex]\mu_k[/katex] is the coefficient of kinetic friction. |
4 | [katex]F_{\text{friction}} = 0.250 \times mg\cos(25^\circ)[/katex] | Substitute values for [katex]\mu_k[/katex] and [katex]F_{\text{normal}}[/katex]. |
5 | [katex]F_{\text{pull}} = F_{\text{parallel}} + F_{\text{friction}}[/katex] | Total force to pull the crate includes parallel force and frictional force. |
6 | [katex]F_{\text{pull}} = mg\sin(25^\circ) + 0.250 \times mg\cos(25^\circ)[/katex] | Combine parallel and frictional forces. |
7 | [katex]W_{\text{output}} = F_{\text{parallel}} \times d[/katex] | Work output, where [katex]F_{\text{parallel}}[/katex] is the force parallel to the incline and [katex]d[/katex] is the distance. |
8 | [katex]W_{\text{output}} = mg\sin(25^\circ) \times 2.5[/katex] | Work done against gravity. |
9 | [katex]W_{\text{input}} = F_{\text{pull}} \times d[/katex] | Work input, force to pull the crate. |
10 | [katex]W_{\text{input}} = \left( mg\sin(25^\circ) + 0.250 \times mg\cos(25^\circ) \right) \times 2.5[/katex] | Work done to pull the crate including overcoming friction. |
11 | [katex]\text{Efficiency} = \frac{W_{\text{output}}}{W_{\text{input}}} \times 100%[/katex] | Efficiency formula. |
12 | [katex]\text{Efficiency} = \frac{mg\sin(25^\circ) \times 2.5}{\left( mg\sin(25^\circ) + 0.250 \times mg\cos(25^\circ) \right) \times 2.5} \times 100%[/katex] | Substitute [katex]W_{\text{output}}[/katex] and [katex]W_{\text{input}}[/katex]. |
13 | [katex]\text{Efficiency} = \frac{\sin(25^\circ)}{\sin(25^\circ) + 0.250 \times \cos(25^\circ)} \times 100%[/katex] | Simplify by canceling [katex]mg[/katex] and [katex]d[/katex]. |
14 | [katex]\text{Efficiency} = 65.10\%[/katex] | Calculated efficiency. |
Just ask: "Help me solve this problem."
The launching mechanism of a toy gun consists of a spring with an unknown spring constant, \( k \). When the spring is compressed \( 0.120 \, \text{m} \) vertically, a \( 35.0 \, \text{g} \) projectile is able to be fired to a maximum height of \( 25 \, \text{m} \) above the position of the projectile when the spring is compressed. Assume that the barrel of the gun is frictionless.
How does the time t1 of a block m reaching the bottom of slide 1 compare with t2, the time taken block of mass 2m to reach the end of slide 2 that’s curved? The blocks are released from the same height.
Refer to the diagram above and solve all equations in-terms of R, M, k, and constants.
A uniform solid cylinder of mass [katex] M [/katex] and radius [katex] R [/katex] is initially at rest on a frictionless horizontal surface. A massless string is attached to the cylinder and is wrapped around it. The string is then pulled with a constant force [katex] F [/katex] , causing the cylinder to rotate about its center of mass. After the cylinder has rotated through an angle [katex] \theta [/katex], what is the kinetic energy of the cylinder in terms of [katex] F [/katex] and [katex] \theta [/katex]?
A 25 g steel ball is attached to the top of a 24-cm-diameter vertical wheel. Starting from rest, the wheel accelerates at [katex] 470 \, \frac{rad}{s^2}[/katex]. The ball is released after [katex]\frac{3}{4} [/katex] of a revolution. How high does it go above the center of the wheel?
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.