0 attempts
0% avg
UBQ Credits
First, convert the rotational speed to radians per second: [katex]\omega = 45 , \frac{\text{rev}}{\text{min}} \times \frac{1 , \text{min}}{60 , \text{s}} \times \frac{2\pi , \text{radians}}{1 , \text{rev}}[/katex].
Note you can convert to linear velocity [katex] v [/katex] instead of using [katex] \omega [/katex], since [katex] v = \omega r [/katex], where [katex] r [/katex] is the radius of the circle.
The minimum coefficient of static friction is found using the balance of forces in the vertical direction, with the static frictional force providing the upward force to counteract gravity, and the centripetal force being provided by the normal force.
| Step | Formula / Derivation | Reasoning |
|---|---|---|
| 1 | [katex]a_c = \frac{v^2}{R}[/katex] | Centripetal acceleration formula. |
| 2 | [katex]v = R\omega[/katex] | Linear velocity in terms of radius and angular velocity. |
| 3 | [katex]a_c = R\omega^2[/katex] | Substitute [katex]v[/katex] into the centripetal acceleration formula. |
| 4 | [katex]F_c = m a_c = m R\omega^2[/katex] | Centripetal force provided by the normal force. |
| 5 | [katex]f_s = \mu_s N[/katex] | Static frictional force opposing gravity. |
| 6 | [katex]f_s = m g[/katex] | Static frictional force equals gravitational force to prevent sliding. |
| 7 | [katex]\mu_s = \frac{f_s}{N} = \frac{mg}{mR\omega^2}[/katex] | Substitute [katex]f_s[/katex] and [katex]N[/katex] with their equivalents. |
| 8 | [katex]\mu_s = \frac{g}{R\omega^2}[/katex] | Cancel [katex]m[/katex] from the equation. |
| 9 | [katex]\mu_s = \frac{g}{R\left(\frac{45}{60} \times 2\pi\right)^2}[/katex] | Substitute [katex]\omega[/katex] with its value in terms of rev/min to rad/s. |
| 10 | [katex]\mu_s = \frac{9.8}{4\left(\frac{3}{4} \pi\right)^2}[/katex] | Substitute given values for [katex]g[/katex] and [katex]R[/katex]. |
| 11 | [katex]\mu_s = \frac{9.8}{4\left(\frac{9}{16} \pi^2\right)}[/katex] | Simplify the expression for [katex]\omega^2[/katex]. |
| 12 | [katex]\boxed{\mu_s = \frac{9.8 \times 16}{4 \times 9 \pi^2}}[/katex] | Final expression for [katex]\mu_s[/katex]. |
Now let’s calculate the exact value for the minimum coefficient of static friction required.
The minimum coefficient of static friction required so that the rider does not slide down the wall is [katex] \boxed{\mu_s \approx 0.11} [/katex]
Just ask: "Help me solve this problem."
A ball of mass \( m \) is fastened to a string. The ball swings at constant speed in a vertical circle of radius \( R \) with the other end of the string held fixed. Neglecting air resistance, what is the difference between the string’s tension at the bottom of the circle and at the top of the circle?
A 2.00 x102 g block on a 50.0 cm long string swings in a circle on a horizontal, frictionless table at 75.0 rpm. What is the speed of block? What is the tension in the string?
A car moving around a circular track with a constant speed has
Consider a neutron star with a mass equal to the sun, a radius of 10 km, and a rotation period of 1.0 s. What is the radius of a geosynchronous orbit about the neutron star? The mass of the sun can be found in the formula sheet above.
A point P is at a distance \( R \) from the axis of rotation of a rigid body whose angular velocity and angular acceleration are \( \omega \) and \( \alpha \) respectively. The linear speed, centripetal acceleration, and tangential acceleration of the point can be expressed as:
| Linear speed | Centripetal acceleration | Tangential acceleration | |
|---|---|---|---|
| \( (a) \) | \( R\omega \) | \( R\omega^{2} \) | \( R\alpha \) |
| \( (b) \) | \( R\omega \) | \( R\alpha \) | \( R\omega^{2} \) |
| \( (c) \) | \( R\omega^{2} \) | \( R\alpha \) | \( R\omega \) |
| \( (d) \) | \( R\omega \) | \( R\omega^{2} \) | \( R\omega \) |
| \( (e) \) | \( R\omega^{2} \) | \( R\alpha \) | \( R\omega^{2} \) |
[katex] \boxed{\mu_s \approx 0.11} [/katex]
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?