0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] PE_{\text{initial}} = 0 [/katex] | The object is initially on the ground, so its initial potential energy is zero (since potential energy is relative to height above a reference point). |
| 2 | [katex] PE_{\text{max}} = mgH [/katex] | At maximum height [katex] H [/katex], all the kinetic energy has been converted to potential energy. Potential energy at height [katex] H [/katex] is given by [katex] mgH [/katex], where [katex] m [/katex] is the mass, [katex] g [/katex] is the acceleration due to gravity, and [katex] H [/katex] is the height. |
| 3 | [katex] PE_{\text{half}} = mg \frac{H}{2} [/katex] | At half the maximum height [katex] \frac{H}{2} [/katex], the potential energy is [katex] mg \frac{H}{2} [/katex]. |
| 4 | [katex] KE_{\text{initial}} = mgH [/katex] | Using the principle of conservation of mechanical energy, the initial kinetic energy must equal the potential energy at maximum height, since there is no kinetic energy at that point (the object is momentarily stationary). |
| 5 | [katex] KE_{\text{half}} = KE_{\text{initial}} – PE_{\text{half}} [/katex] | To find the kinetic energy at height [katex] \frac{H}{2} [/katex], subtract the potential energy at that height from the total initial mechanical energy. |
| 6 | [katex] KE_{\text{half}} = mgH – mg \frac{H}{2} = mg \frac{H}{2} [/katex] | Simplifying, the kinetic energy at [katex] \frac{H}{2} [/katex] is [katex] mg \frac{H}{2} [/katex], or half the initial kinetic energy. |
| 7 | [katex] ME_{\text{initial}} = ME_{\text{half}} = KE_{\text{initial}} [/katex] | Total mechanical energy is conserved (since air resistance is negligible). The mechanical energy at any point during the motion is the sum of potential and kinetic energies and is equal to the initial total mechanical energy. |
| 8 | [katex](a)[/katex] False, [katex](b)[/katex] False, [katex](c)[/katex] False, [katex](d)[/katex] True, [katex](e)[/katex] False | Evaluating each statement: (a) Potential energy at [katex] \frac{H}{2} [/katex] is not half of the initial (it’s [katex] \frac{1}{2} mgH [/katex]). (b) Speed is not directly proportional in this manner. (c) Total mechanical energy is constant, not halved. (d) Kinetic energy at [katex] \frac{H}{2} [/katex] is indeed half of the initial kinetic energy, as shown in the calculations. (e) Since (d) is true, (e) is false. |
Just ask: "Help me solve this problem."
A sphere of mass \( M \) and radius \( r \), and rotational inertia \( I \) is released from the top of an inclined plane of height \( h \). The surface has considerable friction. Using only the variables mentioned, derive an expression for the sphere’s center of mass velocity.
Two identical arrows, one with \( 2 \) times the speed of the other, are fired into a bale of hay. Assuming the hay exerts a constant “frictional” force on the arrows, the faster arrow will penetrate how much farther than the slower arrow?
A \( 1.5 \) \( \text{kg} \) block is pushed to the right with just enough force to get it to move. The block is pushed for five seconds with this constant force, then the force is released and the block slides to a stop. If the coefficient of kinetic friction is \( 0.300 \) and the coefficient of static friction is \( 0.400 \), calculate the amount of time that passes from when the force is applied to when the block stops.
A car travels \( 60 \) \( \text{km} \) at \( 30 \) \( \text{km/h} \), then \( 60 \) \( \text{km} \) at \( 60 \) \( \text{km/h} \). What is its average speed over the entire trip?
A \(6 \, \text{kg}\) cube rests against a compressed spring with a force constant of \(1{,}800 \, \text{N/m}\), initially compressed by \(0.3 \, \text{m}\). Upon release, the cube slides on a horizontal surface with a kinetic friction coefficient of \(\mu_k = 0.12\) for \(3 \, \text{m}\), then ascends a \(12^\circ\) slope, stopping after \(4.5 \, \text{m}\). Determine the coefficient of kinetic friction on the slope.
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?