0 attempts
0% avg
UBQ Credits
| Derivation/Formula | Reasoning |
|---|---|
| \[\text{Forces:}\; N,\; mg,\; f_s\] | The diagram contains the normal reaction \(N\) acting perpendicular to the road surface, the weight \(mg\) acting vertically downward, and the static–friction force \(f_s\) acting up–slope while the rider is at rest on the hill. |
| \[mg\sin\theta,\; mg\cos\theta\] | The weight is resolved into components parallel (\(mg\sin\theta\), down–slope) and perpendicular (\(mg\cos\theta\)) to the incline of angle \(\theta=30^{\circ}\). |
| \[f_s\le \mu_sN\] | Static friction adjusts up to its maximum value \(\mu_sN\;(\mu_s=0.85)\) to keep the bicycle from sliding while the rider pauses. |
| Derivation/Formula | Reasoning |
|---|---|
| \[m=90\,\text{kg}+12\,\text{kg}=102\,\text{kg}\] | Total mass is the sum of rider and bicycle. |
| \[h=\Delta x_1\sin\theta=9\,(0.5)=4.5\,\text{m}\] | The vertical drop after rolling \(\Delta x_1=9\,\text{m}\) down a \(30^{\circ}\) incline is \(h=\Delta x_1\sin\theta\). |
| \[v_i=\sqrt{2gh}=\sqrt{2(9.8)(4.5)}\] | Conservation of energy (no non-conservative work before braking) gives the speed \(v_i\) at the instant the wheels lock. |
| \[v_i\approx9.4\,\text{m\,s}^{-1}\] | Numeric evaluation of the previous expression. |
| \[F_f=\mu_kN=\mu_kmg\cos\theta\] | Once the wheels are locked, kinetic friction of magnitude \(F_f\) opposes the motion (\(\mu_k=0.7\)). |
| \[F_f=0.7(102)(9.8)(0.866)=6.06\times10^{2}\,\text{N}\] | Calculating the friction force with \(\cos30^{\circ}=0.866\). |
| \[\Delta x_2=\frac{\tfrac12v_i^{2}}{g(\mu_k\cos\theta-\sin\theta)}\] | Work–energy: net work \(mg\sin\theta\Delta x_2-F_f\Delta x_2=-\tfrac12mv_i^{2}\). Solving for stopping distance \(\Delta x_2\). |
| \[\Delta x_2\approx42.5\,\text{m}\] | Numeric substitution using \(\mu_k\cos\theta-\sin\theta\approx0.106\). |
| \[W_f=-F_f\Delta x_2\] | Work done by friction is negative because it opposes the displacement down the slope. |
| \[\boxed{W_f\approx-2.6\times10^{4}\,\text{J}}\] | Final numeric value of energy removed by kinetic friction to bring the bicycle to rest. |
| Derivation/Formula | Reasoning |
|---|---|
| \[F_{\text{up}}=mg\sin\theta+f\] | When climbing at constant speed the cyclist’s legs must generate an up-slope force equal to gravity’s component \(mg\sin\theta\) plus rolling/drag/friction forces \(f\). |
| \[F_{\text{down}}=mg\sin\theta-f\] | During descent gravity supplies \(mg\sin\theta\); only a portion is cancelled by friction or air drag, so the net driving force is \(mg\sin\theta-f\) acting without muscular effort. |
| \[F_{\text{up}}>F_{\text{down}}\] | Because \(f>0\), the force required from the cyclist on the climb is strictly larger than the net force aiding motion downhill, making ascent harder than descent. |
| \[W_{\text{climb}}=mg\,h\;>\;0,\quad W_{\text{down}}=-mg\,h\] | Energy must be supplied to increase gravitational potential when going up (positive work), whereas gravity returns that energy on the way down (negative work done by the rider), confirming the greater effort needed to ascend. |
Just ask: "Help me solve this problem."
Ball \(A\) of mass \(m\) is dropped from a building of height \(H\). Ball \(B\) of mass \(1.7 \, \text{m}\) is dropped from a building of height \(1.7H\). Using energy, what the ratio of \(v_A\) to \(v_B\) (final velocity of ball \(A\) to final velocity of ball \(B\)). Air resistance is negligible.
The maximum energy a bone can absorb without breaking is surprisingly small. Experimental data show that a leg bone of a healthy, \( 80 \) \( \text{kg} \) human can absorb about \( 240 \) \( \text{J} \). From what maximum height could a \( 80 \) \( \text{kg} \) person jump and land rigidly upright on both feet without breaking their legs? Assume that all energy is absorbed by the leg bones in a rigid landing. Express your answer with the appropriate units.
An object with a mass \(m = 80 \, \text{g}\) is attached to a spring with a force constant \(k = 25 \, \text{N/m}\). The spring is stretched \(52.0 \, \text{cm}\) and released from rest. If it is oscillating on a horizontal frictionless surface, determine the velocity of the mass when it is halfway to the equilibrium position.
Two balls are thrown off a building with the same speed, one straight up and one at a 45° angle. Which statement is true if air resistance can be ignored?
A \(81 \, \text{kg}\) student dives off a \(45 \, \text{m}\) tall bridge with an \(18 \, \text{m}\) long bungee cord tied to his feet and to the bridge. You can consider the bungee cord to be a flexible spring. What spring constant must the bungee cord have for the student’s lowest point to be \(2.0 \, \text{m}\) above the water?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?