0 attempts
0% avg
UBQ Credits
# Part (a): Finding the final speed of the proton. Note you can also use conversation of energy to find the speed, where [katex] W_{\text{machine}} + KE_i = KE_f [/katex].
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] v_f^2 = v_i^2 + 2ad [/katex] | Use the kinematic equation that relates initial velocity, final velocity, acceleration, and distance traveled, where [katex] v_f [/katex] is the final velocity, [katex] v_i [/katex] is the initial velocity, [katex] a [/katex] is the acceleration, and [katex] d [/katex] is the distance. |
| 2 | [katex] v_f^2 = (2.4 \times 10^7 \, \text{m/s})^2 + 2 \times (3.6 \times 10^{15} \, \text{m/s}^2) \times (0.035 \, \text{m}) [/katex] | Substitute [katex] v_i = 2.4 \times 10^7 \, \text{m/s} [/katex], [katex] a = 3.6 \times 10^{15} \, \text{m/s}^2 [/katex], and [katex] d = 3.5 \, \text{cm} = 0.035 \, \text{m} [/katex]. |
| 3 | [katex] v_f = \sqrt{ (2.4 \times 10^7)^2 + 2 \times 3.6 \times 10^{15} \times 0.035} [/katex] | Simplify and solve for [katex] v_f [/katex]. |
| 4 | [katex] v_f = \sqrt{5.76 \times 10^{14} + 2.52 \times 10^{14}} [/katex] | Calculate inside the square root. |
| 5 | [katex] v_f = \sqrt{8.28 \times 10^{14}} [/katex] | Sum the terms under the square root. |
| 6 | [katex] v_f = 2.88 \times 10^7 \, \text{m/s} [/katex] | Take the square root to find the final speed. |
# Part (b): Calculating the increase in kinetic energy
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] \Delta KE =KE_f – KE_i [/katex] | The change in kinetic energy is the difference between the initial and final kinetic energy. |
| 2 | [katex] \Delta KE = \frac{1}{2} m (v_f^2 – v_i^2) [/katex] | Substitute in the formula for kinetic energy and factor out [katex] \frac{1}{2} m [/katex]. |
| 3 | [katex] \Delta KE = \frac{1}{2} (1.67 \times 10^{-27} \, \text{kg}) [(2.88 \times 10^7 \, \text{m/s})^2 – (2.4 \times 10^7 \, \text{m/s})^2] [/katex] | Substitute the values of [katex] m, v_f, v_i [/katex]. |
| 4 | [katex] \Delta KE = \frac{1}{2} \times 1.67 \times 10^{-27} \times 2.52 \times 10^{14} [/katex] | Simplify the expression. |
| 5 | [katex] \Delta KE = 2.10 \times 10^{-13} \, \text{J} [/katex] | Calculate the final change in kinetic energy, which is the increase in kinetic energy of the proton. |
# Part (c): Effect of tripling the acceleration on the increase in kinetic energy
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] W = \Delta KE [/katex] | Use the work energy pricinple, which states the work applied to the proton is equal to the change in its kinetic energy. |
| 2 | [katex] Fd = \Delta KE [/katex] | Substitute [katex] W [/katex] with [katex] Fd [/katex] since [katex] W = Fd [/katex]. |
| 3 | [katex] mad = \Delta KE [/katex] | Substitute [katex] F [/katex] with [katex] ma [/katex] since [katex] F = ma [/katex]. |
| 4 | [katex] md = \frac{\Delta KE}{a} [/katex] | Divide by acceleration on both sides. This equation clearly shows that [katex] \Delta KE [/katex] is directly proportional to [katex] a [/katex]. Hence tripling acceleration will also triple the the change in kinetic energy. |
Just ask: "Help me solve this problem."
A satellite in circular orbit around the Earth moves at constant speed. This orbit is maintained by the force of gravity between the Earth and the satellite, yet no work is done on the satellite. How is this possible?

The box in the diagram is sliding to the right across a horizontal table, under the influence of the forces shown. Which force(s) is doing negative work on the box?
The two blocks of masses \( M \) and \( 2M \) travel at the same speed \( v \) but in opposite directions. They collide and stick together. How much mechanical energy is lost to other forms of energy during the collision?
A spring launches a \(4 \, \text{kg}\) block across a frictionless horizontal surface. The block then ascends a \(30^\circ\) incline with a kinetic friction coefficient of \(\mu_k = 0.25\), stopping after \(55 \, \text{m}\) on the incline. If the spring constant is \(800 \, \text{N/m}\), find the initial compression of the spring. Disregard friction while in contact with the spring.
A uniform solid cylinder of mass [katex] M [/katex] and radius [katex] R [/katex] is initially at rest on a frictionless horizontal surface. A massless string is attached to the cylinder and is wrapped around it. The string is then pulled with a constant force [katex] F [/katex] , causing the cylinder to rotate about its center of mass. After the cylinder has rotated through an angle [katex] \theta [/katex], what is the kinetic energy of the cylinder in terms of [katex] F [/katex] and [katex] \theta [/katex]?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?