0 attempts
0% avg
# Part (a): Finding the final speed of the proton. Note you can also use conversation of energy to find the speed, where [katex] W_{\text{machine}} + KE_i = KE_f [/katex].
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] v_f^2 = v_i^2 + 2ad [/katex] | Use the kinematic equation that relates initial velocity, final velocity, acceleration, and distance traveled, where [katex] v_f [/katex] is the final velocity, [katex] v_i [/katex] is the initial velocity, [katex] a [/katex] is the acceleration, and [katex] d [/katex] is the distance. |
| 2 | [katex] v_f^2 = (2.4 \times 10^7 \, \text{m/s})^2 + 2 \times (3.6 \times 10^{15} \, \text{m/s}^2) \times (0.035 \, \text{m}) [/katex] | Substitute [katex] v_i = 2.4 \times 10^7 \, \text{m/s} [/katex], [katex] a = 3.6 \times 10^{15} \, \text{m/s}^2 [/katex], and [katex] d = 3.5 \, \text{cm} = 0.035 \, \text{m} [/katex]. |
| 3 | [katex] v_f = \sqrt{ (2.4 \times 10^7)^2 + 2 \times 3.6 \times 10^{15} \times 0.035} [/katex] | Simplify and solve for [katex] v_f [/katex]. |
| 4 | [katex] v_f = \sqrt{5.76 \times 10^{14} + 2.52 \times 10^{14}} [/katex] | Calculate inside the square root. |
| 5 | [katex] v_f = \sqrt{8.28 \times 10^{14}} [/katex] | Sum the terms under the square root. |
| 6 | [katex] v_f = 2.88 \times 10^7 \, \text{m/s} [/katex] | Take the square root to find the final speed. |
# Part (b): Calculating the increase in kinetic energy
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] \Delta KE =KE_f – KE_i [/katex] | The change in kinetic energy is the difference between the initial and final kinetic energy. |
| 2 | [katex] \Delta KE = \frac{1}{2} m (v_f^2 – v_i^2) [/katex] | Substitute in the formula for kinetic energy and factor out [katex] \frac{1}{2} m [/katex]. |
| 3 | [katex] \Delta KE = \frac{1}{2} (1.67 \times 10^{-27} \, \text{kg}) [(2.88 \times 10^7 \, \text{m/s})^2 – (2.4 \times 10^7 \, \text{m/s})^2] [/katex] | Substitute the values of [katex] m, v_f, v_i [/katex]. |
| 4 | [katex] \Delta KE = \frac{1}{2} \times 1.67 \times 10^{-27} \times 2.52 \times 10^{14} [/katex] | Simplify the expression. |
| 5 | [katex] \Delta KE = 2.10 \times 10^{-13} \, \text{J} [/katex] | Calculate the final change in kinetic energy, which is the increase in kinetic energy of the proton. |
# Part (c): Effect of tripling the acceleration on the increase in kinetic energy
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex] W = \Delta KE [/katex] | Use the work energy pricinple, which states the work applied to the proton is equal to the change in its kinetic energy. |
| 2 | [katex] Fd = \Delta KE [/katex] | Substitute [katex] W [/katex] with [katex] Fd [/katex] since [katex] W = Fd [/katex]. |
| 3 | [katex] mad = \Delta KE [/katex] | Substitute [katex] F [/katex] with [katex] ma [/katex] since [katex] F = ma [/katex]. |
| 4 | [katex] md = \frac{\Delta KE}{a} [/katex] | Divide by acceleration on both sides. This equation clearly shows that [katex] \Delta KE [/katex] is directly proportional to [katex] a [/katex]. Hence tripling acceleration will also triple the the change in kinetic energy. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
The launching mechanism of a toy gun consists of a spring with an unknown spring constant, \( k \). When the spring is compressed \( 0.120 \, \text{m} \) vertically, a \( 35.0 \, \text{g} \) projectile is able to be fired to a maximum height of \( 25 \, \text{m} \) above the position of the projectile when the spring is compressed. Assume that the barrel of the gun is frictionless.
A bullet of mass \(0.0500 \, \text{kg}\) traveling at \(50.0 \, \text{m/s}\) is fired horizontally into a wooden block suspended from a long rope. The mass of the wooden block is \(0.300 \, \text{kg}\) and it is initially at rest. The collision is completely inelastic and after impact the bullet + wooden block move together until the center of mass of the system rises a vertical distance \(h\) above its initial position.
A pendulum consists of a ball of mass \( m \) suspended at the end of a massless cord of length \( L \). The pendulum is drawn aside through an angle of \( 60^\circ \) with the vertical and released. At the low point of its swing, the speed of the pendulum ball is

A block is released from rest and slides down a frictionless ramp inclined at \( 30^\circ \) from the horizontal. When the block reaches the bottom, the block-Earth system has mechanical energy \( \text{E}_i \). The experiment is repeated, but now horizontal and vertical forces of magnitude \( F \) are exerted on the block while it slides, as shown above. When the block reaches the bottom, the mechanical energy of the block-Earth system.
A snowboarder starts from rest and slides down a \(32^\circ\) incline that’s \(75 \, \text{m}\) long.
A skier with a mass of \(58 \, \text{kg}\) glides up a snowy incline that forms an angle of \(28^\circ\) with the horizontal. The skier initially moves at a speed of \(7.2 \, \text{m/s}\). After traveling a distance of \(2.3 \, \text{m}\) up the slope, the skier’s speed reduces to \(3.8 \, \text{m/s}\).
A \( 7.3 \) \( \text{kg} \) mass is placed on a spring with a spring constant of \( 34 \) \( \text{N/cm} \). How much does this stretch the spring?
A boulder is raised above the ground so that its potential energy is \(550 \, \text{J}\). Then it is dropped. Assuming \(92 \, \text{J}\) of energy was lost to air resistance, what is the kinetic energy of the boulder just before it hits the ground?
The two blocks of masses \( M \) and \( 2M \) travel at the same speed \( v \) but in opposite directions. They collide and stick together. How much mechanical energy is lost to other forms of energy during the collision?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?