AP Physics

Unit 1 - Vectors and Kinematics

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0

Step Derivation/Formula Reasoning
(a) Calculate the time taken for the ball to reach the wall.
1 Use horizontal motion equation:

\( x = v_0 \cos \theta \cdot t \)

Relates horizontal distance, initial speed, angle, and time.
2 Use vertical motion equation:

\( y = y_0 + v_0 \sin \theta \cdot t – \tfrac{1}{2} g t^2 \)

Relates vertical position, initial speed, angle, time, and gravity.
3 Solve for \( v_0 \) from horizontal equation:

\( v_0 = \dfrac{x}{t \cos \theta} \)

Express \( v_0 \) in terms of known quantities and \( t \).
4 Substitute \( v_0 \) into vertical equation:

\( y = y_0 + \left( \dfrac{x}{t \cos \theta} \right) \sin \theta \cdot t – \tfrac{1}{2} g t^2 \)
Simplify using \( \tan \theta = \dfrac{\sin \theta}{\cos \theta} \):
\( y = y_0 + x \tan \theta – \tfrac{1}{2} g t^2 \)

Eliminated \( v_0 \) to get an equation with only \( t \).
5 Substitute known values:

\( y = 12.2 \, \text{m} \)
\( y_0 = 1.5 \, \text{m} \)
\( x = 45 \, \text{m} \)
\( \tan 30^\circ = 0.5774 \)
\( g = 9.8 \, \text{m/s}^2 \)

\( 12.2 = 1.5 + 45 \times 0.5774 – 4.9 t^2 \)

Plugged in numerical values to simplify the equation.
6 Simplify the equation:

\( 12.2 = 1.5 + 25.983 – 4.9 t^2 \)
\( -15.283 = -4.9 t^2 \)
\( t^2 = \dfrac{15.283}{4.9} \approx 3.118 \)
\( t = \sqrt{3.118} \approx 1.77 \, \text{s} \)

Solved for \( t \), the time to reach the wall.
(b) Calculate the initial speed of the soccer ball.
7 Use \( v_0 = \dfrac{x}{t \cos \theta} \)

\( \cos 30^\circ = 0.8660 \)
\( v_0 = \dfrac{45}{1.77 \times 0.8660} \approx \dfrac{45}{1.532} \approx 29.38 \, \text{m/s} \)

Calculated initial speed using time from part (a).
(c) Find the velocity of the soccer ball as it passes over the wall.
8 Compute horizontal velocity component:

\( v_x = v_0 \cos \theta = 29.38 \times 0.8660 \approx 25.45 \, \text{m/s} \)

Horizontal velocity remains constant.
9 Compute vertical velocity at \( t = 1.77 \, \text{s} \):

\( v_y = v_0 \sin \theta – g t \)
\( \sin 30^\circ = 0.5 \)
\( v_y = 29.38 \times 0.5 – 9.8 \times 1.77 \)
\( v_y = 14.69 – 17.35 \approx -2.66 \, \text{m/s} \)

Calculated vertical velocity at the wall (negative indicates downward).
10 Compute magnitude of velocity:

\( v = \sqrt{v_x^2 + v_y^2} = \sqrt{(25.45)^2 + (-2.66)^2} \approx 25.58 \, \text{m/s} \)

Found the speed as it passes over the wall.
11 Compute direction angle:

\( \phi = \arctan\left( \dfrac{v_y}{v_x} \right) = \arctan\left( \dfrac{-2.66}{25.45} \right) \approx -5.97^\circ \)

Determined angle below horizontal.
(d) Determine if the ball clears the wall when fired at \( 55.5^\circ \).
12 Compute new time to reach wall:

\( \cos 55.5^\circ = 0.5657 \)
\( t = \dfrac{x}{v_0 \cos \theta} = \dfrac{45}{29.38 \times 0.5657} \approx 2.72 \, \text{s} \)

Calculated time to reach wall with new angle.
13 Compute vertical position at \( t = 2.72 \, \text{s} \):

\( \sin 55.5^\circ = 0.8286 \)
\( y = y_0 + v_0 \sin \theta \cdot t – \tfrac{1}{2} g t^2 \)
\( y = 1.5 + (29.38 \times 0.8286) \times 2.72 – 4.9 \times (2.72)^2 \)
\( y = 1.5 + 66.31 – 36.17 \approx 31.64 \, \text{m} \)

Found the height at the wall with new angle.
14 Compare height to wall height:

\( y_{\text{wall}} = 9.0 \, \text{m} \)
Since \( y_{\text{ball}} = 31.64 \, \text{m} > y_{\text{wall}} \), the ball clears the wall.

Determined that the ball will still clear the wall.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

(a) The time taken for the ball to reach the wall is approximately \( 1.77 \, \text{s} \).

(b) The initial speed of the soccer ball is approximately \( 29.38 \, \text{m/s} \).

(c) As it passes over the wall, the ball’s velocity is approximately \( 25.58 \, \text{m/s} \) at an angle of \( 5.97^\circ \) below the horizontal.

(d) Yes, when fired at \( 55.5^\circ \), the ball will still clear the \( 9.0 \, \text{m} \) high wall, passing over it at a height of approximately \( 31.64 \, \text{m} \).

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.