0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]y = \frac{1}{2} g t^2[/katex] | Since the ball is in free fall, its vertical motion is described by the kinematic formula for position under constant acceleration, where [katex]y[/katex] is the vertical displacement, [katex]g[/katex] is the acceleration due to gravity (approximately [katex]9.81 \, \text{m/s}^2[/katex]) and [katex]t[/katex] is the time of fall. |
2 | [katex]t = \sqrt{\frac{2y}{g}}[/katex] | To find the time it takes for the ball to reach the ground, solve for [katex]t[/katex] from the vertical displacement equation, using [katex]y = 20 \, \text{m}[/katex] for the height of the cliff. |
3 | [katex]v_y = g t[/katex] | Use the vertical velocity formula where [katex]v_y[/katex] is the velocity in the vertical direction at time [katex]t[/katex]. |
4 | [katex]v_y = g \sqrt{\frac{2y}{g}}[/katex] | Substitute the expression for [katex]t[/katex] from step 2 into the formula for [katex]v_y[/katex] to express the vertical velocity as a function of [katex]y[/katex] and [katex]g[/katex]. |
5 | [katex]v_y = \sqrt{2gy}[/katex] | Simplify the expression for [katex]v_y[/katex]. |
6 | [katex]v_y = \sqrt{2 \cdot 9.81 \, \text{m/s}^2 \cdot 20 \, \text{m}}[/katex] | Plug in the values for [katex]g[/katex] and [katex]y[/katex] to calculate [katex]v_y[/katex]. |
7 | [katex]v_y = 19.8 \, \text{m/s}[/katex] | Calculate the numerical value of [katex]v_y[/katex]. |
8 | [katex]v = \sqrt{v_x^2 + v_y^2}[/katex] | The total velocity [katex]v[/katex] right before hitting the ground is found using the Pythagorean theorem, where [katex]v_x[/katex] is the horizontal velocity. |
9 | [katex]v = \sqrt{11^2 + 19.8^2}[/katex] | Given the horizontal velocity [katex]v_x = 11 \, \text{m/s}[/katex], use the vertical velocity calculated previously. |
10 | [katex]v = 22.7 \, \text{m/s}[/katex] | Calculate the final total velocity of the ball just before it hits the ground. |
Just ask: "Help me solve this problem."
A toy car moves off the edge of a table that is \(1.25 \, \text{m}\) high. If the car lands \(0.40 \,\text{m}\) from the base of the table…
Which statements are not valid for a projectile? Take up as positive.
A ball of mass \( 0.5 \, \text{kg} \), initially at rest, is kicked directly toward a fence from a point \( 32 \, \text{m} \) away, as shown above. The velocity of the ball as it leaves the kicker’s foot is \( 20 \, \text{m/s} \) at an angle of \( 37^\circ \) above the horizontal. The top of the fence is \( 2.5 \, \text{m} \) high. The ball hits nothing while in flight and air resistance is negligible.
A cat chases a mouse across a 1.0 m high table. The mouse steps out of the way, and the cat slides off the table and strikes the floor 2.2 m from the edge of the table. When the cat slid off the table, what was its speed?
You must split an apple resting on top of you friend’s head from a distance of 27 m. When you aim directly at the apple, the arrow is horizontal. At what angle should you aim the arrow to hit the apple if the arrow travels at a speed of 35 m/s?
22.7 m/s
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.