0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] F_{\text{net}} = T – mg [/katex] | Write the net force equation for the ball at the bottom of the circle. Here, [katex] T [/katex] is the tension in the string and [katex] mg [/katex] is the gravitational force acting downwards on the ball. |
2 | [katex] F_{\text{net}} = \frac{mv^2}{r} [/katex] | Use the centripetal force formula where [katex] m [/katex] is mass, [katex] v [/katex] is the speed, and [katex] r [/katex] is the radius of the circle. |
3 | [katex] \frac{mv^2}{r} = T – mg [/katex] | Set the net force equal to the centripetal force. This combines both equations from Steps 1 and 2. |
4 | [katex] T = \frac{mv^2}{r} + mg [/katex] | Rearrange the equation to solve for the tension [katex] T [/katex] in the string. |
5 | [katex] T = \frac{(2.0 \, \text{kg})(4.0 \, \text{m/s})^2}{0.65 \, \text{m}} + (2.0 \, \text{kg})(9.8 \, \text{m/s}^2) [/katex] | Substitute the known values: mass [katex] m = 2.0 \, \text{kg} [/katex], speed [katex] v = 4.0 \, \text{m/s} [/katex], radius [katex] r = 0.65 \, \text{m} [/katex], and gravitational acceleration [katex] g = 9.8 \, \text{m/s}^2 [/katex]. |
6 | [katex] T = \frac{(2.0)(16)}{0.65} + 19.6 [/katex] | Calculate intermediate values for clarity: [katex] 4.0^2 = 16 [/katex] and [katex] (2.0)(9.8) = 19.6 [/katex]. |
7 | [katex] T = \frac{32}{0.65} + 19.6 [/katex] | Continue simplifying the equation. |
8 | [katex] T = 49.23 + 19.6 [/katex] | Divide to find the centripetal force component: [katex] \frac{32}{0.65} = 49.23 [/katex]. |
9 | [katex] T = 68.83 \, \text{N} [/katex] | Sum the forces to arrive at the final tension in the string: [katex] 49.23 + 19.6 = 68.83 [/katex]. |
Just ask: "Help me solve this problem."
A car is moving up the side of a circular roller coaster loop of radius 12 m. The angular velocity is [katex] 1.8 \, \text{rad/s} [/katex] and angular acceleration is [katex] -0.82 \, \text{rad/s}^2 [/katex]. The car is at the same elevation as the center of the loop. Find the magnitude and direction of the acceleration.
A new car is tested on a 230-m-diameter track. If the car speeds up at a steady [katex] 1.4 \, m/s^2[/katex], how long after starting is the magnitude of its centripetal acceleration equal to the tangential acceleration?
A ball of mass m is fastened to a string. The ball swings at constant speed in a vertical circle of radius R with the other end of the string held fixed. Neglecting air resistance, what is the difference between the string’s tension at the bottom of the circle and at the top of the circle?
A delivery truck is traveling north. It then turns along a leftward circular curve. This the packages in the truck to slide to the RIGHT. Which of the following is true of the net force on the packages as they are sliding?
An 80 kg person sits in a swing that goes around in a circle. The chain connecting the swing to the center of the ride is 8 m long and it makes and angle of 40° with the horizontal. What is the speed of the person going around in a circle?
69 N
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.