AP Physics

Unit 1 - Vectors and Kinematics

Advanced

Mathematical

FRQ

You're a Pro Member

Supercharge UBQ

0 attempts

0% avg

UBQ Credits

Verfied Answer
Verfied Explanation 0 likes
0
Step Derivation/Formula Reasoning
1 Calculate the car’s speed after acceleration:

Initial speed: \( u_0 = 0 \, \text{m/s} \)
Acceleration: \( a_1 = 3.5 \, \text{m/s}^2 \)
Time: \( t_1 = 10 \, \text{s} \)

\( v_1 = u_0 + a_1 t_1 \)
\( v_1 = 0 + (3.5)(10) = 35 \, \text{m/s} \)

Determined the speed after accelerating for 10 seconds.
2 Calculate distance during acceleration:

\( s_1 = u_0 t_1 + \tfrac{1}{2} a_1 t_1^2 \)
\( s_1 = 0 + \tfrac{1}{2} (3.5)(10)^2 = 175 \, \text{m} \)

Found distance covered during acceleration phase.
3 Determine distance during reaction time:

Reaction time: \( t_r = 0.6 \, \text{s} \)
\( s_{\text{react}} = v_1 t_r \)
\( s_{\text{react}} = (35)(0.6) = 21 \, \text{m} \)

Calculated distance traveled during driver’s reaction time.
4 Calculate remaining distance to the ramp:

Distance ahead when noticing ramp: \( 50 \, \text{m} \)
Remaining distance after reaction: \( d_{\text{remain}} = 50 – 21 = 29 \, \text{m} \)

Determined how much distance is left to brake.
5 Compute stopping distance required:

Braking acceleration: \( a_2 = -7.2 \, \text{m/s}^2 \)
\( v^2 = u^2 + 2 a s \)
\( 0 = (35)^2 + 2(-7.2) s_{\text{brake}} \)
\( s_{\text{brake}} = \dfrac{(35)^2}{2 \times 7.2} \approx 85.07 \, \text{m} \)

Calculated distance needed to stop completely.
6 Find speed at the ramp:

\( v^2 = u^2 + 2 a s \)
\( v^2 = (35)^2 + 2(-7.2)(29) \)
\( v^2 = 1225 – 417.6 = 807.4 \)
\( v = \sqrt{807.4} \approx 28.43 \, \text{m/s} \)

Determined the car’s speed upon reaching the ramp.
7 Resolve velocity into components at the ramp:

Ramp angle: \( \theta = 27^\circ \)
\( v_x = v \cos \theta = (28.43) \cos 27^\circ \approx 25.34 \, \text{m/s} \)
\( v_y = v \sin \theta = (28.43) \sin 27^\circ \approx 12.91 \, \text{m/s} \)

Found horizontal and vertical components of velocity.
8 (a) Calculate time of flight after ramp:

Vertical motion equation:
\( y = v_y t – \tfrac{1}{2} g t^2 \)
Height difference: \( y = -3 \, \text{m} \)
\( -3 = (12.91) t – 4.9 t^2 \)
Rearranged to quadratic: \( 4.9 t^2 – 12.91 t – 3 = 0 \)
Solved for \( t \):
\( t = \dfrac{12.91 \pm \sqrt{12.91^2 – 4 \times 4.9 \times (-3)}}{2 \times 4.9} \)
\( t \approx 2.85 \, \text{s} \)

Calculated time the car is airborne after the ramp.
9 Compute horizontal distance traveled:

\( \Delta x = v_x t \)
\( \Delta x = (25.34)(2.85) \approx 72.22 \, \text{m} \)

Found horizontal distance after going off the ramp.
10 (b) Determine final vertical velocity:

\( v_{y_{\text{final}}} = v_y – g t \)
\( v_{y_{\text{final}}} = 12.91 – (9.8)(2.85) \approx -15.02 \, \text{m/s} \)

Calculated vertical component of velocity upon landing.
11 Calculate final speed and direction:

\( v_{\text{final}} = \sqrt{v_x^2 + v_{y_{\text{final}}}^2} \)
\( v_{\text{final}} = \sqrt{(25.34)^2 + (-15.02)^2} \approx 29.46 \, \text{m/s} \)

Direction angle:
\( \theta_{\text{final}} = \arctan\left( \dfrac{|v_{y_{\text{final}}}|}{v_x} \right) \)
\( \theta_{\text{final}} = \arctan\left( \dfrac{15.02}{25.34} \right) \approx 30.7^\circ \) below horizontal

Found the magnitude and angle of the car’s velocity upon impact.

Need Help? Ask Phy To Explain

Just ask: "Help me solve this problem."

Just Drag and Drop!
Quick Actions ?
×

Topics in this question

Join 1-to-1 Elite Tutoring

See how Others Did on this question | Coming Soon

Discussion Threads

Leave a Reply

(a) The horizontal distance the car travels after going off the ramp is approximately \( 72.2 \, \text{m} \).

(b) The car’s final velocity upon reaching the ground is approximately \( 29.5 \, \text{m/s} \) at an angle of \( 30.7^\circ \) below the horizontal.

Nerd Notes

Discover the world's best Physics resources

Continue with

By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.

Error Report

Sign in before submitting feedback.

Sign In to View Your Questions

Share This Question

Enjoying UBQ? Share the 🔗 with friends!

Link Copied!
KinematicsForces
\(\Delta x = v_i t + \frac{1}{2} at^2\)\(F = ma\)
\(v = v_i + at\)\(F_g = \frac{G m_1 m_2}{r^2}\)
\(v^2 = v_i^2 + 2a \Delta x\)\(f = \mu N\)
\(\Delta x = \frac{v_i + v}{2} t\)\(F_s =-kx\)
\(v^2 = v_f^2 \,-\, 2a \Delta x\) 
Circular MotionEnergy
\(F_c = \frac{mv^2}{r}\)\(KE = \frac{1}{2} mv^2\)
\(a_c = \frac{v^2}{r}\)\(PE = mgh\)
\(T = 2\pi \sqrt{\frac{r}{g}}\)\(KE_i + PE_i = KE_f + PE_f\)
 \(W = Fd \cos\theta\)
MomentumTorque and Rotations
\(p = mv\)\(\tau = r \cdot F \cdot \sin(\theta)\)
\(J = \Delta p\)\(I = \sum mr^2\)
\(p_i = p_f\)\(L = I \cdot \omega\)
Simple Harmonic MotionFluids
\(F = -kx\)\(P = \frac{F}{A}\)
\(T = 2\pi \sqrt{\frac{l}{g}}\)\(P_{\text{total}} = P_{\text{atm}} + \rho gh\)
\(T = 2\pi \sqrt{\frac{m}{k}}\)\(Q = Av\)
\(x(t) = A \cos(\omega t + \phi)\)\(F_b = \rho V g\)
\(a = -\omega^2 x\)\(A_1v_1 = A_2v_2\)
ConstantDescription
[katex]g[/katex]Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface
[katex]G[/katex]Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex]
[katex]\mu_k[/katex] and [katex]\mu_s[/katex]Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion.
[katex]k[/katex]Spring constant, in [katex]\text{N/m}[/katex]
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex]Mass of the Earth
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex]Mass of the Moon
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex]Mass of the Sun
VariableSI Unit
[katex]s[/katex] (Displacement)[katex]\text{meters (m)}[/katex]
[katex]v[/katex] (Velocity)[katex]\text{meters per second (m/s)}[/katex]
[katex]a[/katex] (Acceleration)[katex]\text{meters per second squared (m/s}^2\text{)}[/katex]
[katex]t[/katex] (Time)[katex]\text{seconds (s)}[/katex]
[katex]m[/katex] (Mass)[katex]\text{kilograms (kg)}[/katex]
VariableDerived SI Unit
[katex]F[/katex] (Force)[katex]\text{newtons (N)}[/katex]
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy)[katex]\text{joules (J)}[/katex]
[katex]P[/katex] (Power)[katex]\text{watts (W)}[/katex]
[katex]p[/katex] (Momentum)[katex]\text{kilogram meters per second (kgm/s)}[/katex]
[katex]\omega[/katex] (Angular Velocity)[katex]\text{radians per second (rad/s)}[/katex]
[katex]\tau[/katex] (Torque)[katex]\text{newton meters (Nm)}[/katex]
[katex]I[/katex] (Moment of Inertia)[katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex]
[katex]f[/katex] (Frequency)[katex]\text{hertz (Hz)}[/katex]

General Metric Conversion Chart

Example of using unit analysis: Convert 5 kilometers to millimeters. 

  1. Start with the given measurement: [katex]\text{5 km}[/katex]

  2. Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]

  3. Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]

  4. Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]

Prefix

Symbol

Power of Ten

Equivalent

Pico-

p

[katex]10^{-12}[/katex]

Nano-

n

[katex]10^{-9}[/katex]

Micro-

µ

[katex]10^{-6}[/katex]

Milli-

m

[katex]10^{-3}[/katex]

Centi-

c

[katex]10^{-2}[/katex]

Deci-

d

[katex]10^{-1}[/katex]

(Base unit)

[katex]10^{0}[/katex]

Deca- or Deka-

da

[katex]10^{1}[/katex]

Hecto-

h

[katex]10^{2}[/katex]

Kilo-

k

[katex]10^{3}[/katex]

Mega-

M

[katex]10^{6}[/katex]

Giga-

G

[katex]10^{9}[/katex]

Tera-

T

[katex]10^{12}[/katex]

  1. 1. Some answers may vary by 1% due to rounding.
  2. Gravity values may differ: \(9.81 \, \text{m/s}^2\) or \(10 \, \text{m/s}^2\).
  3. Variables can be written differently. For example, initial velocity (\(v_i\)) may be \(u\), and displacement (\(\Delta x\)) may be \(s\).
  4. Bookmark questions you can’t solve to revisit them later
  5. 5. Seek help if you’re stuck. The sooner you understand, the better your chances on tests.

Phy Pro

The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.

$11.99

per month

Billed Monthly. Cancel Anytime.

Trial  –>  Phy Pro

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

You can close this ad in 7 seconds.

Ads display every few minutes. Upgrade to Phy Pro to remove ads.

You can close this ad in 5 seconds.

Ads show frequently. Upgrade to Phy Pro to remove ads.

Jason here! Feeling uneasy about your next physics test? We will help boost your grade in just two hours.

We use site cookies to improve your experience. By continuing to browse on this website, you accept the use of cookies as outlined in our privacy policy.