0 attempts
0% avg
UBQ Credits
(a) How far does the textbook travel horizontally after it is released?
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v_{0x} = v_0 \cos(\theta)[/katex] | Calculate the initial horizontal velocity. Use the initial speed and the angle of projection. |
2 | [katex]v_{0y} = v_0 \sin(\theta)[/katex] | Calculate the initial vertical velocity. Use the initial speed and the angle of projection. |
3 | [katex]v_{0x} = 20 \cos(36^\circ) \approx 16.2 \, \text{m/s}[/katex] | Substitute [katex] v_0 = 20 \, \text{m/s} [/katex] and [katex] \theta = 36^\circ [/katex] into the horizontal velocity formula. |
4 | [katex]v_{0y} = 20 \sin(36^\circ) \approx 11.8 \, \text{m/s}[/katex] | Substitute [katex] v_0 = 20 \, \text{m/s} [/katex] and [katex] \theta = 36^\circ [/katex] into the vertical velocity formula. |
5 | [katex]y = v_{0y} t – \frac{1}{2} g t^2 + \text{initial height}[/katex] | Use the equation of motion in the vertical direction. The textbook is moving under gravity. |
6 | [katex]0 = 12 + 11.8 t – \frac{1}{2} \cdot 9.8 t^2[/katex] | Set the displacement [katex] y [/katex] to zero because we are calculating the time [katex] t [/katex] when the textbook reaches the ground. [katex] g = 9.8 \text{m/s}^2 [/katex]. |
7 | [katex]4.9 t^2 – 11.8 t – 12 = 0[/katex] | Simplify the quadratic equation to solve for [katex] t [/katex]. |
8 | [katex] t = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a} [/katex] | Use the quadratic formula where [katex] a = 4.9 [/katex], [katex] b = -11.8 [/katex], and [katex] c = -12 [/katex]. |
9 | [katex] t \approx 3.18 \, \text{s} [/katex] | Solve the equation and take the positive root. This is the time the textbook stays in the air. |
10 | [katex] x = v_{0x} \cdot t [/katex] | Calculate the horizontal distance the textbook travels. Use the horizontal velocity and the time. |
11 | [katex] x \approx 16.2 \times 3.18 \approx 51.5 \, \text{m} [/katex] | Substitute [katex] v_{0x} = 16.2 \, \text{m/s} [/katex] and [katex] t = 3.18 \, \text{s} [/katex] into the horizontal distance formula to get the final answer. |
[katex] \text{The horizontal distance traveled is approximately } 51.5 \, \text{m}[/katex] |
(b) What is the book’s velocity (speed and direction) when it reaches the ground?
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v_y = v_{0y} – g t [/katex] | Calculate the final vertical velocity using the initial vertical velocity, gravitational acceleration, and time. |
2 | [katex]v_y = 11.8 – 9.8 \times 3.18 \approx -19.4 \, \text{m/s}[/katex] | Substitute [katex] v_{0y} = 11.8 \, \text{m/s} [/katex], [katex] g = 9.8 \, \text{m/s}^2 [/katex], and [katex] t = 3.18 \, \text{s} [/katex] into the vertical velocity formula. |
3 | [katex]v_{\text{total}} = \sqrt{v_{x}^2 + v_y^2} [/katex] | Calculate the magnitude of the total velocity using the Pythagorean theorem. |
4 | [katex]v_{\text{total}} \approx \sqrt{16.2^2 + (-19.4)^2} \approx 25.3 \, \text{m/s} [/katex] | Substitute [katex] v_{x} = 16.2 \, \text{m/s} [/katex] and [katex] v_y = -19.4 \, \text{m/s} [/katex] into the total velocity formula. |
5 | [katex]\theta = \tan^{-1} \left(\frac{v_y}{v_x}\right) [/katex] | Calculate the direction of the velocity. Use the inverse tangent to find the angle. |
6 | [katex]\theta \approx \tan^{-1} \left(\frac{-19.4}{16.2}\right) \approx -50.1^\circ [/katex] | The vector points 50.1° below the x-axis. |
[katex] \text{The velocity when the book reaches the ground is approximately } 25.3 \, \text{m/s} \text{ at } -50.1^\circ [/katex] |
(c) What is the book’s maximum height above the ground?
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v_y = 0 [/katex] | The vertical velocity at the maximum height is zero. |
2 | [katex]v_y = v_{0y} – g t[/katex] | Use the vertical motion equation to find the time to reach maximum height. |
3 | [katex]0 = 11.8 – 9.8 t[/katex] | Set final vertical velocity [katex] v_y = 0 [/katex] and solve for [katex] t [/katex]. |
4 | [katex]t = \frac{11.8}{9.8} \approx 1.20 \, \text{s}[/katex] | Solving the equation gives the time to reach maximum height. |
5 | [katex]H = v_{0y} t – \frac{1}{2} g t^2 + \text{initial height}[/katex] | Use the vertical motion equation to find the maximum height. |
6 | [katex]H \approx 11.8 \times 1.2 – \frac{1}{2} \times 9.8 \times (1.2)^2 + 12 [/katex] | Substitute [katex] v_{0y} = 11.8 \, \text{m/s} [/katex], [katex] g = 9.8 \, \text{m/s}^2 [/katex], [katex] t = 1.2 \, \text{s} [/katex], and initial height = 12 m. |
7 | [katex]H \approx 19.1 \, \text{m}[/katex] | Calculate the maximum height above the ground. |
[katex] \text{The maximum height above the ground is approximately } 19.1 \, \text{m} [/katex] |
Just ask: "Help me solve this problem."
A rock is thrown at an angle of \( 42^\circ \) above the horizontal at a speed of \( 14 \, \text{m/s} \). Determine how long it takes the rock to hit the ground.
A rifle is used to shoot a target twice, using identical cartridges. The first time, the rifle is aimed parallel to the ground and directly at the center of the bull’s-eye. The bullet strikes the target at a distance of \( H_A \) below the center, however. The second time, the rifle is similarly aimed, but from twice the distance from the target. This time the bullet strikes the target at a distance of \( H_B \) below the center. Find the ratio \( H_B / H_A \).
A circus cannon fires an acrobat into the air at an angle of \( 45^\circ \) above the horizontal, and the acrobat reaches a maximum height \( y \) above her original launch height. The cannon is now aimed so that it fires straight up, at an identical speed, into the air at an angle of \( 90^\circ \) to the horizontal. In terms of \( y \), what is the acrobat’s new maximum height?
A toy car moves off the edge of a table that is \(1.25 \, \text{m}\) high. If the car lands \(0.40 \,\text{m}\) from the base of the table…
On a distant planet, golf is just as popular as it is on earth. A golfer tees off and drives the ball 3.5 times as far as he would have on earth, given the same initial velocities on both planets. The ball is launched at a speed of 45 m/s at an angle of 29° above the horizontal. When the ball lands, it is at the same level as the tee. On the distant planet find:
a) 51.5 m
b) 25.3 m/s at 50.1° below the horizontal
c) 19.1 m
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY instantly solves any question
🔥 Elite Members get up to 30% off Physics Tutoring
🧠 Learning Physics this summer? Try our free course.
🎯 Need exam style practice questions? We’ve got over 2000.