0 attempts
0% avg
UBQ Credits
(a) How far does the textbook travel horizontally after it is released?
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v_{0x} = v_0 \cos(\theta)[/katex] | Calculate the initial horizontal velocity. Use the initial speed and the angle of projection. |
2 | [katex]v_{0y} = v_0 \sin(\theta)[/katex] | Calculate the initial vertical velocity. Use the initial speed and the angle of projection. |
3 | [katex]v_{0x} = 20 \cos(36^\circ) \approx 16.2 \, \text{m/s}[/katex] | Substitute [katex] v_0 = 20 \, \text{m/s} [/katex] and [katex] \theta = 36^\circ [/katex] into the horizontal velocity formula. |
4 | [katex]v_{0y} = 20 \sin(36^\circ) \approx 11.8 \, \text{m/s}[/katex] | Substitute [katex] v_0 = 20 \, \text{m/s} [/katex] and [katex] \theta = 36^\circ [/katex] into the vertical velocity formula. |
5 | [katex]y = v_{0y} t – \frac{1}{2} g t^2 + \text{initial height}[/katex] | Use the equation of motion in the vertical direction. The textbook is moving under gravity. |
6 | [katex]0 = 12 + 11.8 t – \frac{1}{2} \cdot 9.8 t^2[/katex] | Set the displacement [katex] y [/katex] to zero because we are calculating the time [katex] t [/katex] when the textbook reaches the ground. [katex] g = 9.8 \text{m/s}^2 [/katex]. |
7 | [katex]4.9 t^2 – 11.8 t – 12 = 0[/katex] | Simplify the quadratic equation to solve for [katex] t [/katex]. |
8 | [katex] t = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a} [/katex] | Use the quadratic formula where [katex] a = 4.9 [/katex], [katex] b = -11.8 [/katex], and [katex] c = -12 [/katex]. |
9 | [katex] t \approx 3.18 \, \text{s} [/katex] | Solve the equation and take the positive root. This is the time the textbook stays in the air. |
10 | [katex] x = v_{0x} \cdot t [/katex] | Calculate the horizontal distance the textbook travels. Use the horizontal velocity and the time. |
11 | [katex] x \approx 16.2 \times 3.18 \approx 51.5 \, \text{m} [/katex] | Substitute [katex] v_{0x} = 16.2 \, \text{m/s} [/katex] and [katex] t = 3.18 \, \text{s} [/katex] into the horizontal distance formula to get the final answer. |
[katex] \text{The horizontal distance traveled is approximately } 51.5 \, \text{m}[/katex] |
(b) What is the book’s velocity (speed and direction) when it reaches the ground?
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v_y = v_{0y} – g t [/katex] | Calculate the final vertical velocity using the initial vertical velocity, gravitational acceleration, and time. |
2 | [katex]v_y = 11.8 – 9.8 \times 3.18 \approx -19.4 \, \text{m/s}[/katex] | Substitute [katex] v_{0y} = 11.8 \, \text{m/s} [/katex], [katex] g = 9.8 \, \text{m/s}^2 [/katex], and [katex] t = 3.18 \, \text{s} [/katex] into the vertical velocity formula. |
3 | [katex]v_{\text{total}} = \sqrt{v_{x}^2 + v_y^2} [/katex] | Calculate the magnitude of the total velocity using the Pythagorean theorem. |
4 | [katex]v_{\text{total}} \approx \sqrt{16.2^2 + (-19.4)^2} \approx 25.3 \, \text{m/s} [/katex] | Substitute [katex] v_{x} = 16.2 \, \text{m/s} [/katex] and [katex] v_y = -19.4 \, \text{m/s} [/katex] into the total velocity formula. |
5 | [katex]\theta = \tan^{-1} \left(\frac{v_y}{v_x}\right) [/katex] | Calculate the direction of the velocity. Use the inverse tangent to find the angle. |
6 | [katex]\theta \approx \tan^{-1} \left(\frac{-19.4}{16.2}\right) \approx -50.1^\circ [/katex] | The vector points 50.1° below the x-axis. |
[katex] \text{The velocity when the book reaches the ground is approximately } 25.3 \, \text{m/s} \text{ at } -50.1^\circ [/katex] |
(c) What is the book’s maximum height above the ground?
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex]v_y = 0 [/katex] | The vertical velocity at the maximum height is zero. |
2 | [katex]v_y = v_{0y} – g t[/katex] | Use the vertical motion equation to find the time to reach maximum height. |
3 | [katex]0 = 11.8 – 9.8 t[/katex] | Set final vertical velocity [katex] v_y = 0 [/katex] and solve for [katex] t [/katex]. |
4 | [katex]t = \frac{11.8}{9.8} \approx 1.20 \, \text{s}[/katex] | Solving the equation gives the time to reach maximum height. |
5 | [katex]H = v_{0y} t – \frac{1}{2} g t^2 + \text{initial height}[/katex] | Use the vertical motion equation to find the maximum height. |
6 | [katex]H \approx 11.8 \times 1.2 – \frac{1}{2} \times 9.8 \times (1.2)^2 + 12 [/katex] | Substitute [katex] v_{0y} = 11.8 \, \text{m/s} [/katex], [katex] g = 9.8 \, \text{m/s}^2 [/katex], [katex] t = 1.2 \, \text{s} [/katex], and initial height = 12 m. |
7 | [katex]H \approx 19.1 \, \text{m}[/katex] | Calculate the maximum height above the ground. |
[katex] \text{The maximum height above the ground is approximately } 19.1 \, \text{m} [/katex] |
Just ask: "Help me solve this problem."
Two balls are thrown off a building with the same speed, one straight up and one at a 45° angle. Which statement is true if air resistance can be ignored?
A soccer ball with an initial height of \(1.5 \, \text{m}\) above the ground is launched at an angle of \(30^\circ\) above the horizontal. The soccer ball travels a horizontal distance of \(45 \, \text{m}\) to a \(9.0 \, \text{m}\) high castle wall, and passes over \(3.20 \, \text{m}\) above the highest point of the wall. Assume air resistance is negligible.
A baseball is thrown at an angle of 25° relative to the ground at a speed of 23.0 m/s. The ball is caught 42.0 m from the thrower.
In a lab experiment, a ball is rolled down a ramp so that it leaves the edge of the table with a horizontal velocity [katex]v[/katex]. Assume there are no frictional forces. If the table has a height [katex]h[/katex] above the ground, how far away from the edge of the table, a distance [katex]x[/katex], does the ball land?
3 clay balls, labeled A, B, and C are launched from the same height at the same speed as shown above. A is launched at \( 30^\circ \) above horizontal, B is launched horizontally, and C is launched \( 30^\circ \) below the horizontal. They all hit the wall (before reaching the ground) in times \( t_A \), \( t_B \), and \( t_C \) respectively. Rank these times from least to greatest.
a) 51.5 m
b) 25.3 m/s at 50.1° below the horizontal
c) 19.1 m
By continuing you (1) agree to our Terms of Sale and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.