0 attempts
0% avg
(a) How far does the textbook travel horizontally after it is released?
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex]v_{0x} = v_0 \cos(\theta)[/katex] | Calculate the initial horizontal velocity. Use the initial speed and the angle of projection. |
| 2 | [katex]v_{0y} = v_0 \sin(\theta)[/katex] | Calculate the initial vertical velocity. Use the initial speed and the angle of projection. |
| 3 | [katex]v_{0x} = 20 \cos(36^\circ) \approx 16.2 \, \text{m/s}[/katex] | Substitute [katex] v_0 = 20 \, \text{m/s} [/katex] and [katex] \theta = 36^\circ [/katex] into the horizontal velocity formula. |
| 4 | [katex]v_{0y} = 20 \sin(36^\circ) \approx 11.8 \, \text{m/s}[/katex] | Substitute [katex] v_0 = 20 \, \text{m/s} [/katex] and [katex] \theta = 36^\circ [/katex] into the vertical velocity formula. |
| 5 | [katex]y = v_{0y} t – \frac{1}{2} g t^2 + \text{initial height}[/katex] | Use the equation of motion in the vertical direction. The textbook is moving under gravity. |
| 6 | [katex]0 = 12 + 11.8 t – \frac{1}{2} \cdot 9.8 t^2[/katex] | Set the displacement [katex] y [/katex] to zero because we are calculating the time [katex] t [/katex] when the textbook reaches the ground. [katex] g = 9.8 \text{m/s}^2 [/katex]. |
| 7 | [katex]4.9 t^2 – 11.8 t – 12 = 0[/katex] | Simplify the quadratic equation to solve for [katex] t [/katex]. |
| 8 | [katex] t = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a} [/katex] | Use the quadratic formula where [katex] a = 4.9 [/katex], [katex] b = -11.8 [/katex], and [katex] c = -12 [/katex]. |
| 9 | [katex] t \approx 3.18 \, \text{s} [/katex] | Solve the equation and take the positive root. This is the time the textbook stays in the air. |
| 10 | [katex] x = v_{0x} \cdot t [/katex] | Calculate the horizontal distance the textbook travels. Use the horizontal velocity and the time. |
| 11 | [katex] x \approx 16.2 \times 3.18 \approx 51.5 \, \text{m} [/katex] | Substitute [katex] v_{0x} = 16.2 \, \text{m/s} [/katex] and [katex] t = 3.18 \, \text{s} [/katex] into the horizontal distance formula to get the final answer. |
| [katex] \text{The horizontal distance traveled is approximately } 51.5 \, \text{m}[/katex] | ||
(b) What is the book’s velocity (speed and direction) when it reaches the ground?
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex]v_y = v_{0y} – g t [/katex] | Calculate the final vertical velocity using the initial vertical velocity, gravitational acceleration, and time. |
| 2 | [katex]v_y = 11.8 – 9.8 \times 3.18 \approx -19.4 \, \text{m/s}[/katex] | Substitute [katex] v_{0y} = 11.8 \, \text{m/s} [/katex], [katex] g = 9.8 \, \text{m/s}^2 [/katex], and [katex] t = 3.18 \, \text{s} [/katex] into the vertical velocity formula. |
| 3 | [katex]v_{\text{total}} = \sqrt{v_{x}^2 + v_y^2} [/katex] | Calculate the magnitude of the total velocity using the Pythagorean theorem. |
| 4 | [katex]v_{\text{total}} \approx \sqrt{16.2^2 + (-19.4)^2} \approx 25.3 \, \text{m/s} [/katex] | Substitute [katex] v_{x} = 16.2 \, \text{m/s} [/katex] and [katex] v_y = -19.4 \, \text{m/s} [/katex] into the total velocity formula. |
| 5 | [katex]\theta = \tan^{-1} \left(\frac{v_y}{v_x}\right) [/katex] | Calculate the direction of the velocity. Use the inverse tangent to find the angle. |
| 6 | [katex]\theta \approx \tan^{-1} \left(\frac{-19.4}{16.2}\right) \approx -50.1^\circ [/katex] | The vector points 50.1° below the x-axis. |
| [katex] \text{The velocity when the book reaches the ground is approximately } 25.3 \, \text{m/s} \text{ at } -50.1^\circ [/katex] | ||
(c) What is the book’s maximum height above the ground?
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex]v_y = 0 [/katex] | The vertical velocity at the maximum height is zero. |
| 2 | [katex]v_y = v_{0y} – g t[/katex] | Use the vertical motion equation to find the time to reach maximum height. |
| 3 | [katex]0 = 11.8 – 9.8 t[/katex] | Set final vertical velocity [katex] v_y = 0 [/katex] and solve for [katex] t [/katex]. |
| 4 | [katex]t = \frac{11.8}{9.8} \approx 1.20 \, \text{s}[/katex] | Solving the equation gives the time to reach maximum height. |
| 5 | [katex]H = v_{0y} t – \frac{1}{2} g t^2 + \text{initial height}[/katex] | Use the vertical motion equation to find the maximum height. |
| 6 | [katex]H \approx 11.8 \times 1.2 – \frac{1}{2} \times 9.8 \times (1.2)^2 + 12 [/katex] | Substitute [katex] v_{0y} = 11.8 \, \text{m/s} [/katex], [katex] g = 9.8 \, \text{m/s}^2 [/katex], [katex] t = 1.2 \, \text{s} [/katex], and initial height = 12 m. |
| 7 | [katex]H \approx 19.1 \, \text{m}[/katex] | Calculate the maximum height above the ground. |
| [katex] \text{The maximum height above the ground is approximately } 19.1 \, \text{m} [/katex] | ||
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
A plane, 220 meters high, is dropping a supply crate to an island below. It is traveling with a horizontal velocity of 150 m/s. At what horizontal distance must the plane drop the supply crate for it to land on the island? Use [katex] g = 9.81 \, m/s^2[/katex].
In archery, should the arrow be aimed directly at the target? How should your angle of aim depend on the distance to the target? Explain without using equations.
A bird, traveling at \(50 \, \text{m/s}\) wants to hit a man \(100 \, \text{m}\) below with a dropping. How far in distance before flying directly over the man should the bird release it?
A batter hits a fly ball which leaves the bat \( 0.90 \) \( \text{m} \) above the ground at an angle of \( 61^\circ \) with an initial speed of \( 28 \) \( \text{m/s} \) heading toward centerfield. Ignore air resistance.
A block of mass \(M_1\) travels horizontally with a constant speed \(v_0\) on a plateau of height \(H\) until it comes to a cliff. A toboggan of mass \(M_2\) is positioned on level ground below the cliff. The center of the toboggan is a distance \(D\) from the base of the cliff.
Three identical rocks are launched with identical speeds from the top of a platform of height \( h_0 \).
Which of the following correctly relates the magnitude \( v_y \) of the vertical component of the velocity of each rock immediately before it hits the ground?
Suppose the water at the top of Niagara Falls has a horizontal speed of \( 2.7 \, \text{m/s} \) just before it cascades over the edge of the falls. At what vertical distance below the edge does the velocity vector of the water point downward at a \( 75^\circ \) angle below the horizontal?
A golfer hits a shot to a green that is elevated \(2.80 \, \text{m}\) above the point where the ball is struck. The ball leaves the club at a speed of \(18.9 \, \text{m/s}\) at an angle of \(52.0^\circ\) above the horizontal. It rises to its maximum height and then falls down to the green. Ignoring air resistance, find the speed of the ball just before it lands.
A ball is tossed straight up while the thrower is standing in a moving train car that is moving at a constant velocity. Neglecting air resistance, what is the path of the ball relative to the ground outside the train?
Water balloons are tossed from the roof of a building, all with the same speed but with different launch angles. Which one has the highest speed when it hits the ground? Ignore air resistance. Without using equations, explain your answer.
a) 51.5 m
b) 25.3 m/s at 50.1° below the horizontal
c) 19.1 m
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?