0 attempts
0% avg
UBQ Credits
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | \[\Delta x = \frac{1}{2} a t^2\] | Use constant–acceleration kinematics with initial velocity \(v_i = 0\). |
2 | \[a = \frac{2\Delta x}{t^2}\] | Algebraically isolate \(a\). |
3 | \[a = \frac{2(10)}{(4.5)^2} = 0.99\,\text{m/s}^2\] | Insert \(\Delta x = 10\,\text{m}\) and \(t = 4.5\,\text{s}\) to find \(a \approx 0.99\,\text{m/s}^2\). |
4 | \[F_{1x}=100\cos20^\circ,\;F_{2x}=-400\cos40^\circ,\;F_{3x}=500\cos10^\circ\] | Resolve each force into horizontal components; left is negative, right positive. |
5 | \[F_{1x}=93.97\,\text{N},\;F_{2x}=-306.6\,\text{N},\;F_{3x}=492.4\,\text{N}\] | Evaluate the trigonometric products. |
6 | \[F_{x,\text{applied}} = 279.8\,\text{N}\] | Sum \(F_{1x}+F_{2x}+F_{3x}\) to get the net applied horizontal force. |
7 | \[F_{1y}=+100\sin20^\circ,\;F_{2y}=-400\sin40^\circ,\;F_{3y}=-500\sin10^\circ\] | Resolve forces into vertical components; upward is positive. |
8 | \[F_{1y}=+34.2\,\text{N},\;F_{2y}=-257.1\,\text{N},\;F_{3y}=-86.8\,\text{N}\] | Compute the numeric values. |
9 | \[F_{y,\text{applied}} = -309.7\,\text{N}\] | Add the vertical components to find a downward net external load of \(309.7\,\text{N}\). |
10 | \[N = mg + 309.7\,\text{N}\] | Vertical equilibrium requires \(N + F_{1y} = mg + |F_{2y}| + |F_{3y}|\); simplify to this expression for the normal force. |
11 | \[f_k = \mu_k N = 0.2\,(mg + 309.7)\] | Kinetic friction opposes motion with magnitude \(\mu_k N\). |
12 | \[F_{\text{net}} = F_{x,\text{applied}} – f_k\] | Net horizontal force equals applied force minus friction (leftward). |
13 | \[ma = 279.8 – 0.2(mg + 309.7)\] | Apply Newton’s second law \(\sum F_x = ma\). |
14 | \[m(a + 1.96) = 217.8\] | Use \(g = 9.8\,\text{m/s}^2\) and simplify: \(0.2g = 1.96\,\text{N/kg}\). |
15 | \[m = \frac{217.8}{a + 1.96}\] | Isolate the unknown mass. |
16 | \[m = \frac{217.8}{0.99 + 1.96} = 73.9\,\text{kg}\] | Insert \(a \approx 0.99\,\text{m/s}^2\) to calculate \(m\). |
17 | \[\boxed{m \approx 7.4 \times 10^{1}\,\text{kg}}\] | Express the mass to two significant figures. |
Just ask: "Help me solve this problem."
An object weighs \( 432 \) \( \text{N} \) on the surface of Earth. At a height of \( 3R_{\text{Earth}} \) above Earth’s surface, what is its weight?
Two students are on a balcony 19.6 m above the street. One student throws a ball vertically downward at 14.7 m/s. At the same instant, the other student throws a ball vertically upward at the same speed. The second ball just misses the balcony on the way down.
A \(0.5 \, \text{mm}\) wire made of carbon and manganese can just barely support the weight of a \(70.0 \, \text{kg}\) person that is holding on vertically. Suppose this wire is used to lift a \(45.0 \, \text{kg}\) load. What maximum vertical acceleration can be achieved without breaking the wire?
The magnitude of the gravitational field on the surface of a new planet is \(20 \, \text{N/kg}\). The planet’s mass is half the mass of Earth. The radius of Earth is \(6400 \, \text{km}\). What is the radius of the new planet?
A ball falls straight down through the air under the influence of gravity. There is a retarding force \(F\) on the ball with magnitude given by \(F=bv\), where \(v\) is the speed of the ball and \(b\) is a positive constant. The ball reaches a terminal velocity after a time \(t\). The magnitude of the acceleration at time \(t/2\) is
\(74\,\text{kg}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?