0 attempts
0% avg
# Part (a): Expression for the radius of the hoop
The solution involves converting the initial kinetic energy into gravitational potential energy at the maximum height [katex] h [/katex].
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | [katex]v = R\omega[/katex] | The velocity [katex] v [/katex] of the hoop at the bottom is related to the angular velocity [katex] \omega [/katex] and the radius [katex] R [/katex] of the hoop by the no-slip condition. |
| 2 | [katex]KE_{\text{bottom}} = \frac{1}{2}m v^2 + \frac{1}{2} I \omega^2[/katex] | Calculate the total kinetic energy at the bottom considering both translational ([katex] \frac{1}{2}m v^2 [/katex]) and rotational ([katex] \frac{1}{2} I \omega^2 [/katex]) kinetic energy. |
| 3 | [katex]I = m R^2[/katex] (for a hoop) | The moment of inertia [katex] I [/katex] of a hoop about its center is [katex] m R^2 [/katex]. |
| 4 | [katex]KE_{\text{bottom}} = \frac{1}{2}m (R\omega)^2 + \frac{1}{2} m R^2 \omega^2 = m R^2 \omega^2[/katex] | Substitute [katex] I [/katex] and [katex] v [/katex] into the kinetic energy expression and simplify. |
| 5 | [katex]PE_{\text{top}} = mgh[/katex] | Calculate the potential energy at the maximum height [katex] h [/katex] using the mass [katex] m [/katex] and gravitational acceleration [katex] g [/katex]. |
| 6 | [katex]KE_{\text{bottom}} = PE_{\text{top}}[/katex] | Apply conservation of mechanical energy, assuming no energy loss to friction or air resistance. |
| 7 | [katex]m R^2 \omega^2 = mgh[/katex] | Set the expressions for kinetic and potential energy equal and simplify. |
| 8 | [katex]R = \sqrt{\frac{gh}{\omega^2}}[/katex] | Solve for [katex] R [/katex]. This equation provides the radius in terms of the given quantities and constants. |
# Part (b): Direction of friction while the hoop rolls up the ramp
| Step | Explanation |
|---|---|
| Reasoning | The direction of friction must oppose the tendency of slipping. Whether the hoop slides up or down the ramp, it will always try to slide down the ramp. Thus, static friction acts in the direction of motion, up the ramp, to prevent the hoop from sliding back. |
# Part (c): Direction of friction while the hoop rolls down the ramp
| Step | Explanation |
|---|---|
| Reasoning | As explained in part (b), regardless of the direction the hoop travels on the ramp, friction will continue to point up the ramp. As the hoop rotates down the ramp, it want to slip down the ramp, but is countered by static friction that points up the ramp. |
Just ask: "Help me solve this problem."
We'll help clarify entire units in one hour or less — guaranteed.
A mechanical wheel initially at rest on the floor begins rolling forward with an angular acceleration of \( 2\pi \, \text{rad/s}^2 \). If the wheel has a radius of \( 2 \, \text{m} \), what distance does the wheel travel in \( 3 \) seconds?

Two spheres of equal size and equal mass are rotated with an equal amount of torque. One of the spheres is solid with its mass evenly distributed throughout its volume, and the other is hollow with all of its mass concentrated at the edges. Which sphere would rotate faster if the same amount of torque is applied for the same period of time for both?
A solid sphere, solid cylinder, and a hollow pipe all have equal masses and radii. If the three of them are released simultaneously at the top of an inclined plane and do not slip, which one will reach the bottom first? [katex] I_{sphere} = \frac{2}{5}MR^2[/katex], [katex] I_{cylinder} = \frac{1}{2}MR^2[/katex], [katex] I_{pipe} = MR^2[/katex]

Pulleys \( X \) and \( Y \) are each attached to a block by a string that wraps around the pulley. Both blocks are released and have the same linear acceleration \( a \). As the blocks fall, the pulleys rotate about their centers. Pulley \( Y \) has a larger radius than Pulley \( X \). How does the angular acceleration \( \alpha_X \) of Pulley \( X \) compare to the angular acceleration \( \alpha_Y \) of Pulley \( Y \)?

A wheel of radius \( R \) and negligible mass is mounted on a horizontal frictionless axle so that the wheel is in a vertical plane. Three small objects having masses \( m \), \( M \), and \( 2M \), respectively, are mounted on the rim of the wheel, as shown above. If the system is in static equilibrium, what is the value of \( m \) in terms of \( M \)?

An isolated spherical star of radius \( R_o \), rotates about an axis that passes through its center with an angular velocity of \( \omega_o \). Gravitational forces within the star cause the star’s radius to collapse and decrease to a value \( r_o < R_o \), but the mass of the star remains constant. A graph of the star’s angular velocity as a function of time as it collapses is shown. Which of the following predictions is correct about the angular momentum \( L \) of the star immediately after the collapse?
A car accelerates from \( 0 \) to \( 25 \) \( \text{m/s} \) in \( 5 \) \( \text{s} \). If the car’s tires have a diameter of \( 70 \) \( \text{cm} \), how many revolutions does a tire make while accelerating?
Suppose just two external forces act on a stationary, rigid object and the two forces are equal in magnitude and opposite in direction. Under what condition does the object start to rotate?
Two equal-magnitude forces are applied to a door at the doorknob. The first force is applied perpendicular to the door, and the second force is applied at \( 30^\circ \) to the plane of the door. Which force exerts the greater torque about the door hinge?
Two uniform disks have the same mass but different radii: disk \( 1 \) has a radius \( R \) and disk \( 2 \) has a radius \( 2R \). What is the ratio of the moment of inertia of the first disk to the second disk?
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
Metric Prefixes
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
One price to unlock most advanced version of Phy across all our tools.
per month
Billed Monthly. Cancel Anytime.
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?