0 attempts
0% avg
UBQ Credits
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[m_1 = 4\,\text{kg},\; m_2 = 7\,\text{kg},\; v_i = 10\,\text{m/s}\] | Identify the masses and the initial velocity \(v_i\) of the \(4\,\text{kg}\) mass. The \(7\,\text{kg}\) mass is initially at rest. |
| 2 | \[p_{x,i}=m_1 v_i = 4(10)=40,\; p_{y,i}=0\] | Calculate the initial momentum components. Motion is purely horizontal to the right, so the vertical component is zero. |
| 3 | \[v_{x2}=2\cos22^{\circ},\; v_{y2}=-2\sin22^{\circ}\] | Resolve the \(7\,\text{kg}\) mass’s given final speed (\(2\,\text{m/s}\)) into horizontal and vertical components. The vertical component is negative (below the horizontal). |
| 4 | \[v_{x2}\approx1.854,\; v_{y2}\approx-0.749\] | Numerical evaluation of the trigonometric components. |
| 5 | \[4 v_{x1}+7 v_{x2}=40\] | Apply conservation of momentum in the \(x\)-direction: total initial \(p_x\) equals total final \(p_x\). |
| 6 | \[4 v_{y1}+7 v_{y2}=0\] | Apply conservation of momentum in the \(y\)-direction: initial \(p_y\) is zero, so the final \(p_y\) must also be zero. |
| 7 | \[v_{x1}=\frac{40-7 v_{x2}}{4}\] | Solve the \(x\)-momentum equation for the unknown horizontal component \(v_{x1}\) of the \(4\,\text{kg}\) mass. |
| 8 | \[v_{x1}=\frac{40-7(1.854)}{4}\approx6.755\,\text{m/s}\] | Substitute \(v_{x2}\) and compute \(v_{x1}\). |
| 9 | \[v_{y1}=-\frac{7 v_{y2}}{4}\] | Rearrange the \(y\)-momentum equation to isolate the vertical component \(v_{y1}\) of the \(4\,\text{kg}\) mass. |
| 10 | \[v_{y1}=-\frac{7(-0.749)}{4}\approx1.311\,\text{m/s}\] | Insert \(v_{y2}\) and calculate \(v_{y1}\). The result is positive, meaning the mass moves upward after the collision. |
| 11 | \[v_x=\sqrt{v_{x1}^2+v_{y1}^2}\] | Use the Pythagorean relation to find the magnitude \(v_x\) of the final velocity of the \(4\,\text{kg}\) mass. |
| 12 | \[v_x=\sqrt{(6.755)^2+(1.311)^2}\approx6.88\,\text{m/s}\] | Compute the numerical value of the speed. |
| 13 | \[\theta=\tan^{-1}\!\left(\frac{v_{y1}}{v_{x1}}\right)\] | Determine the direction angle \(\theta\) measured above the horizontal. |
| 14 | \[\theta=\tan^{-1}\!\left(\frac{1.311}{6.755}\right)\approx11^{\circ}\] | Evaluate the inverse tangent to find the angle. |
| 15 | \[\boxed{v_x\approx6.9\,\text{m/s},\;\theta\approx11^{\circ}\,\text{above horizontal}}\] | Present the final boxed answer: the speed and its angle relative to the horizontal. |
Just ask: "Help me solve this problem."
A space probe far from the Earth is traveling at 14.8 km/s. It has mass 1312 kg. The probe fires its rockets to give a constant thrust of 156 kN for 220 seconds. It accelerates in the same direction as its initial velocity. In this time it burns 150 kg of fuel. Calculate final speed of the space probe in km/s.
Note: This is a bonus question. Skip if you haven’t yet taken calculus.
| Experiment | Initial Velocity of Cart X \( (\text{m/s}) \) | Initial Velocity of Cart Y \( (\text{m/s}) \) | Final Velocity of Cart X \( (\text{m/s}) \) | Final Velocity of Cart Y \( (\text{m/s}) \) |
|---|---|---|---|---|
| \( 1 \) | \( 1 \) | \( 0 \) | \( 0 \) | \( 1 \) |
| \( 2 \) | \( 1 \) | \( -1 \) | \( -1 \) | \( 1 \) |
| \( 3 \) | \( 2 \) | \( 1 \) | \( 1 \) | \( 2 \) |
A student performs several experiments in which two carts collide as they travel along a horizontal surface. Cart X and Cart Y both have a mass of \( 1 \) \( \text{kg} \). Data collected from the three experiments are shown in the table above. During which experiment does the center of mass of the system of two carts have the greatest change in its momentum?
Two people, one of mass \( 88 \) \( \text{kg} \) and the other of mass \( 55 \) \( \text{kg} \), sit in a rowboat of mass \( 70 \) \( \text{kg} \). With the boat initially at rest, the two people, who have been sitting at opposite ends of the boat \( 3.1 \) \( \text{m} \) apart from each other, now exchange seats.
A firecracker in a coconut blows the coconut into three pieces. Two pieces of equal mass fly off south and west, perpendicular to each other, at \( 18 \) \( \text{m/s} \). The third piece has \( 2.5 \) times the mass as the other two.

In which of the following is the rate of change of the particle’s momentum zero?
\(6.9\,\text{m/s}\)
\(11^{\circ}\text{ above horizontal}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?