0 attempts
0% avg
UBQ Credits
| Step | Derivation / Formula | Reasoning |
|---|---|---|
| 1 | \[m_1 = 4\,\text{kg},\; m_2 = 7\,\text{kg},\; v_i = 10\,\text{m/s}\] | Identify the masses and the initial velocity \(v_i\) of the \(4\,\text{kg}\) mass. The \(7\,\text{kg}\) mass is initially at rest. |
| 2 | \[p_{x,i}=m_1 v_i = 4(10)=40,\; p_{y,i}=0\] | Calculate the initial momentum components. Motion is purely horizontal to the right, so the vertical component is zero. |
| 3 | \[v_{x2}=2\cos22^{\circ},\; v_{y2}=-2\sin22^{\circ}\] | Resolve the \(7\,\text{kg}\) mass’s given final speed (\(2\,\text{m/s}\)) into horizontal and vertical components. The vertical component is negative (below the horizontal). |
| 4 | \[v_{x2}\approx1.854,\; v_{y2}\approx-0.749\] | Numerical evaluation of the trigonometric components. |
| 5 | \[4 v_{x1}+7 v_{x2}=40\] | Apply conservation of momentum in the \(x\)-direction: total initial \(p_x\) equals total final \(p_x\). |
| 6 | \[4 v_{y1}+7 v_{y2}=0\] | Apply conservation of momentum in the \(y\)-direction: initial \(p_y\) is zero, so the final \(p_y\) must also be zero. |
| 7 | \[v_{x1}=\frac{40-7 v_{x2}}{4}\] | Solve the \(x\)-momentum equation for the unknown horizontal component \(v_{x1}\) of the \(4\,\text{kg}\) mass. |
| 8 | \[v_{x1}=\frac{40-7(1.854)}{4}\approx6.755\,\text{m/s}\] | Substitute \(v_{x2}\) and compute \(v_{x1}\). |
| 9 | \[v_{y1}=-\frac{7 v_{y2}}{4}\] | Rearrange the \(y\)-momentum equation to isolate the vertical component \(v_{y1}\) of the \(4\,\text{kg}\) mass. |
| 10 | \[v_{y1}=-\frac{7(-0.749)}{4}\approx1.311\,\text{m/s}\] | Insert \(v_{y2}\) and calculate \(v_{y1}\). The result is positive, meaning the mass moves upward after the collision. |
| 11 | \[v_x=\sqrt{v_{x1}^2+v_{y1}^2}\] | Use the Pythagorean relation to find the magnitude \(v_x\) of the final velocity of the \(4\,\text{kg}\) mass. |
| 12 | \[v_x=\sqrt{(6.755)^2+(1.311)^2}\approx6.88\,\text{m/s}\] | Compute the numerical value of the speed. |
| 13 | \[\theta=\tan^{-1}\!\left(\frac{v_{y1}}{v_{x1}}\right)\] | Determine the direction angle \(\theta\) measured above the horizontal. |
| 14 | \[\theta=\tan^{-1}\!\left(\frac{1.311}{6.755}\right)\approx11^{\circ}\] | Evaluate the inverse tangent to find the angle. |
| 15 | \[\boxed{v_x\approx6.9\,\text{m/s},\;\theta\approx11^{\circ}\,\text{above horizontal}}\] | Present the final boxed answer: the speed and its angle relative to the horizontal. |
Just ask: "Help me solve this problem."
Astronaut Jennifer’s lifeline to her spaceship comes loose and she finds herself stranded, “floating” \( 100 \) \( \text{m} \) from the mothership. She suddenly throws her \( 2.00 \) \( \text{kg} \) wrench at \( 20 \) \( \text{m/s} \) in a direction away from the ship. If she and her spacesuit have a combined mass of \( 200 \) \( \text{kg} \), how long does it take her to coast back to her spaceship?
A \(4 \, \text{kg}\) mass is traveling at \(10 \, \text{m/s}\) to the right when it collides elastically with a stationary \(7 \, \text{kg}\) mass. The \(7 \, \text{kg}\) mass then travels at \(2 \, \text{m/s}\) at an angle of \(22^\circ\) below the horizontal. What is the velocity of the \(4 \, \text{kg}\) mass?
A 75.0kg log floats downstream with a speed of 1.80 m/s. Eight frogs hop onto the log in a series of perfectly inelastic collisions. If each frog has a mass of 0.30 kg and an upstream speed of 1.3 m/s, what is the change in kinetic energy for this system?
Two ice skaters suddenly push off against one another starting from a stationary position. The \(45 \, \text{kg}\) skater acquires a speed of \(0.375 \, \text{m/s}\) relative to the ice. What speed does the \(60 \, \text{kg}\) skater acquire relative to the ice?
Two identical blocks are connected to the opposite ends of a compressed spring. The blocks initially slide together on a frictionless surface with velocity \( v \) to the right. The spring is then released by remote control. At some later instant, the left block is moving at \( \frac{v}{2} \) to the left, and the other block is moving to the right. What is the speed of the center of mass of the system at that instant?
\(6.9\,\text{m/s}\)
\(11^{\circ}\text{ above horizontal}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 course so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?