0 attempts
0% avg
UBQ Credits
Using the energy conservation principle: the kinetic energy at release will be converted to potential energy at the highest point. Calculate height [katex] h [/katex] above the wheel center.
Alternatively, you can use both rotational and linear kinematics to determine the max height as shown below.
Step | Derivation/Formula | Reasoning |
---|---|---|
1 | [katex] r = \frac{D}{2} [/katex] | Calculate the radius [katex] r [/katex] of the wheel by dividing the diameter [katex] D [/katex] by 2. The given diameter [katex] D [/katex] is 24 cm, so [katex] r = 24 \, \text{cm} / 2 = 12 \, \text{cm} = 0.12 \, \text{m} [/katex]. |
2 | [katex] {\omega_f }^2 ={\omega_i }^2 + 2\alpha \Delta \theta [/katex] | Use the angular kinematic equation to find the final angular velocity [katex] \omega_f [/katex]. Assume initial angular velocity [katex] \omega_i [/katex] is zero since the wheel starts from rest and angular acceleration [katex] \alpha [/katex] is given. |
3 | [katex] \omega_f = \sqrt{2 \alpha \theta} [/katex] | Rearrange equation in step 2 and calculate the final angular velocity [katex] \omega_f [/katex]. |
4 | [katex] v = r \omega_f [/katex] | To find the height ( a linear distance) we need to find the linear speed [katex] v [/katex] of the ball at the point of release. Use the equation [katex] v = r \omega [/katex]. |
5 | [katex] v = 0.12 \times \sqrt{2 \times 470 \times \frac{3\pi}{2}} [/katex] | Substitute values and calculate [katex] v = 7.99 \, m/s [/katex]. |
6 | [katex] {v_f}^2 = {v_0}^2 + 2a\Delta x [/katex] | Linear kinematic equation to solve for the change in vertical height, given that the final speed is 0 at the max height. |
7 | [katex] \Delta x = h_{max} = \frac{-{v_0}^2}{2g} [/katex] | Solve for [katex] \Delta x [/katex] which is the maximum height. |
8 | [katex] h = \frac{-(0.12 \times \sqrt{2 \times 470 \times \frac{3\pi}{2}})^2}{2 \times -9.81} [/katex] | Calculate [katex] h [/katex] by substituting [katex] v [/katex] from step 7 and solve. |
9 | [katex] h_{max} = 3.25 \, m [/katex] | This is the final step where the height [katex] h [/katex] is computed with all values substituted and simplified. |
This table gives a detailed breakdown of calculating the height that a steel ball reaches above the center of a wheel, considering the kinematic equations for rotational and linear motions and energy conservation principles.
Just ask: "Help me solve this problem."
An object moves at a constant speed of [katex] 9.0 \frac{m}{s} [/katex] in a circular path of radius of 1.5 m. What is the angular acceleration of the object?
A 5-meter long ladder is leaning against a wall, with the bottom of the ladder 3 meters from the wall. The ladder is uniform and has a mass of 20 kg. A person of mass 80 kg is standing on the ladder at a distance of 4 meters from the bottom of the ladder. The ladder makes an angle of 60 degrees with the ground. What is the force exerted by the wall on the ladder?
How does the speed \(v_1\) of a block \(m\) reaching the bottom of slide 1 compare with \(v_2\), the speed of a block \(2m\) reaching the end of slide 2? The blocks are released from the same height.
Wagon | Wheel Structure | Moment of Inertia | Wheel Mass | Wheel Radius |
---|---|---|---|---|
Wagon \(A\) | Solid disk | \[\frac{1}{2} M R^2\] | \[ 0.5 \, \text{kg} \] | \[ 0.1 \, \text{m} \] |
Wagon \(B\) | Solid disk | \[\frac{1}{2} M R^2\] | \[ 0.2 \, \text{kg} \] | \[ 0.1 \, \text{m} \] |
Wagon \(C\) | Hollow hoop | \[M R^2\] | \[ 0.1 \, \text{kg} \] | \[ 0.1 \, \text{m} \] |
Three wagons have identical total mass (including their wheels) and each has four wheels. However, the wheels on each wagon have different designs with varying mass distributions and radii as shown in a reference chart. When accelerating each wagon from a standstill to \( 10 \) \( \text{m/s} \), which wagon requires the most energy input?
A mechanical wheel initially at rest on the floor begins rolling forward with an angular acceleration of \( 2\pi \, \text{rad/s}^2 \). If the wheel has a radius of \( 2 \, \text{m} \), what distance does the wheel travel in \( 3 \) seconds?
[katex] h_{max} = 3.25 \, m [/katex]
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
Kinematics | Forces |
---|---|
\(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
\(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
\(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
\(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
\(v^2 = v_f^2 \,-\, 2a \Delta x\) |
Circular Motion | Energy |
---|---|
\(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
\(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
\(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
\(W = Fd \cos\theta\) |
Momentum | Torque and Rotations |
---|---|
\(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
\(J = \Delta p\) | \(I = \sum mr^2\) |
\(p_i = p_f\) | \(L = I \cdot \omega\) |
Simple Harmonic Motion | Fluids |
---|---|
\(F = -kx\) | \(P = \frac{F}{A}\) |
\(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
\(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
\(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
\(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
Constant | Description |
---|---|
[katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
[katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
[katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
[katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
[katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
[katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
[katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
Variable | SI Unit |
---|---|
[katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
[katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
[katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
[katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
[katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
Variable | Derived SI Unit |
---|---|
[katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
[katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
[katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
[katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
[katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
[katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
[katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
[katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted the ultimate A.P Physics 1 course that simplifies everything so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the upcoming AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?