0 attempts
0% avg
UBQ Credits
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[\omega = \sqrt{\dfrac{g}{L}}\] | For small angles, a simple pendulum performs simple harmonic motion with angular frequency given by \(\sqrt{g/L}\). |
| 2 | \[\omega = \sqrt{\dfrac{9.81\,\text{m/s}^2}{1.2\,\text{m}}}\] | Substitute \(g = 9.81\,\text{m/s}^2\) and \(L = 1.2\,\text{m}\). |
| 3 | \[\boxed{\omega = 2.86\,\text{rad/s}}\] | Evaluate the square root. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[T = \dfrac{2\pi}{\omega}\] | The period of simple harmonic motion is the reciprocal of the frequency: \(T = 2\pi/\omega\). |
| 2 | \[T = \dfrac{2\pi}{2.86}\] | Insert the value of \(\omega\) from part (a). |
| 3 | \[\boxed{T = 2.20\,\text{s}}\] | Compute the quotient. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[\theta_{\max} = 10^{\circ} \times \dfrac{\pi}{180^{\circ}}\] | Convert the amplitude from degrees to radians: \(10^{\circ}=0.1745\,\text{rad}\). |
| 2 | \[\Delta x_{\max} = L\,\theta_{\max}\] | Arc length for small angles: \(\Delta x = L\theta\). |
| 3 | \[v_{\max} = \omega\,\Delta x_{\max}\] | For SHM, maximum speed equals \(\omega\) times maximum displacement. |
| 4 | \[v_{\max} = 2.86\,(1.2)(0.1745)\] | Insert \(\omega\), \(L\), and \(\theta_{\max}\). |
| 5 | \[\boxed{v_{\max} = 0.60\,\text{m/s}}\] | Multiply to find the speed. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[a_{\max} = \omega^{2}\,\Delta x_{\max}\] | In SHM, maximum acceleration equals \(\omega^{2}\) times maximum displacement. |
| 2 | \[a_{\max} = (2.86)^2\,(0.209)\] | Use \(\Delta x_{\max}=0.209\,\text{m}\) from part (c). |
| 3 | \[\boxed{a_{\max} = 1.71\,\text{m/s}^{2}}\] | Compute the product. |
| Step | Derivation/Formula | Reasoning |
|---|---|---|
| 1 | \[\omega = 2\pi f\] | Angular frequency relates to frequency: \(\omega = 2\pi f\). |
| 2 | \[g’ = L\,\omega^{2}\] | For a pendulum, \(\omega^{2} = g’/L\Rightarrow g’ = L\omega^{2}\). |
| 3 | \[\omega = 2\pi(2.3)\] | Insert \(f = 2.3\,\text{Hz}\). |
| 4 | \[g’ = 1.2\,[2\pi(2.3)]^{2}\] | Substitute \(L = 1.2\,\text{m}\) and the expression for \(\omega\). |
| 5 | \[\boxed{g’ = 2.5 \times 10^{2}\,\text{m/s}^{2}}\] | Evaluate to obtain the exoplanet’s gravitational acceleration. |
Just ask: "Help me solve this problem."
An object in simple harmonic motion obeys the following position versus time equation: \( y = (0.50 \text{ m}) \sin \left( \frac{\pi}{2} t \right) \). What is the amplitude of vibration?
A \(10 \, \text{meter}\) long pendulum on the earth, is set into motion by releasing it from a maximum angle of less than \(10^\circ\) relative to the vertical. At what time \(t\) will the pendulum have fallen to a perfectly vertical orientation?
For an object oscillating in SHM, what is the relationship between its displacement, velocity, and acceleration graphs as a function of time?

A block of mass \( 0.5 \) \( \text{kg} \) is attached to a horizontal spring with a spring constant of \( 150 \) \( \text{N/m} \). The block is released from rest at position \( x = 0.05 \) \( \text{m} \), as shown, and undergoes simple harmonic motion, reaching a maximum position of \( x = 0.1 \) \( \text{m} \). The speed of the block when it passes through position \( x = 0.09 \) \( \text{m} \) is most nearly

A simple pendulum oscillates with amplitude \(A\) and period \(T\), as represented on the graph above. Which option best represents the magnitude of the pendulum’s velocity \(v\) and acceleration \(a\) at time \(\frac{T}{2}\)?
\(2.86\,\text{rad/s}\)
\(2.20\,\text{s}\)
\(0.60\,\text{m/s}\)
\(1.71\,\text{m/s^{2}}\)
\(2.5\times 10^{2}\,\text{m/s^{2}}\)
By continuing you (1) agree to our Terms of Use and Terms of Sale and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy.
| Kinematics | Forces |
|---|---|
| \(\Delta x = v_i t + \frac{1}{2} at^2\) | \(F = ma\) |
| \(v = v_i + at\) | \(F_g = \frac{G m_1 m_2}{r^2}\) |
| \(v^2 = v_i^2 + 2a \Delta x\) | \(f = \mu N\) |
| \(\Delta x = \frac{v_i + v}{2} t\) | \(F_s =-kx\) |
| \(v^2 = v_f^2 \,-\, 2a \Delta x\) |
| Circular Motion | Energy |
|---|---|
| \(F_c = \frac{mv^2}{r}\) | \(KE = \frac{1}{2} mv^2\) |
| \(a_c = \frac{v^2}{r}\) | \(PE = mgh\) |
| \(T = 2\pi \sqrt{\frac{r}{g}}\) | \(KE_i + PE_i = KE_f + PE_f\) |
| \(W = Fd \cos\theta\) |
| Momentum | Torque and Rotations |
|---|---|
| \(p = mv\) | \(\tau = r \cdot F \cdot \sin(\theta)\) |
| \(J = \Delta p\) | \(I = \sum mr^2\) |
| \(p_i = p_f\) | \(L = I \cdot \omega\) |
| Simple Harmonic Motion | Fluids |
|---|---|
| \(F = -kx\) | \(P = \frac{F}{A}\) |
| \(T = 2\pi \sqrt{\frac{l}{g}}\) | \(P_{\text{total}} = P_{\text{atm}} + \rho gh\) |
| \(T = 2\pi \sqrt{\frac{m}{k}}\) | \(Q = Av\) |
| \(x(t) = A \cos(\omega t + \phi)\) | \(F_b = \rho V g\) |
| \(a = -\omega^2 x\) | \(A_1v_1 = A_2v_2\) |
| Constant | Description |
|---|---|
| [katex]g[/katex] | Acceleration due to gravity, typically [katex]9.8 , \text{m/s}^2[/katex] on Earth’s surface |
| [katex]G[/katex] | Universal Gravitational Constant, [katex]6.674 \times 10^{-11} , \text{N} \cdot \text{m}^2/\text{kg}^2[/katex] |
| [katex]\mu_k[/katex] and [katex]\mu_s[/katex] | Coefficients of kinetic ([katex]\mu_k[/katex]) and static ([katex]\mu_s[/katex]) friction, dimensionless. Static friction ([katex]\mu_s[/katex]) is usually greater than kinetic friction ([katex]\mu_k[/katex]) as it resists the start of motion. |
| [katex]k[/katex] | Spring constant, in [katex]\text{N/m}[/katex] |
| [katex] M_E = 5.972 \times 10^{24} , \text{kg} [/katex] | Mass of the Earth |
| [katex] M_M = 7.348 \times 10^{22} , \text{kg} [/katex] | Mass of the Moon |
| [katex] M_M = 1.989 \times 10^{30} , \text{kg} [/katex] | Mass of the Sun |
| Variable | SI Unit |
|---|---|
| [katex]s[/katex] (Displacement) | [katex]\text{meters (m)}[/katex] |
| [katex]v[/katex] (Velocity) | [katex]\text{meters per second (m/s)}[/katex] |
| [katex]a[/katex] (Acceleration) | [katex]\text{meters per second squared (m/s}^2\text{)}[/katex] |
| [katex]t[/katex] (Time) | [katex]\text{seconds (s)}[/katex] |
| [katex]m[/katex] (Mass) | [katex]\text{kilograms (kg)}[/katex] |
| Variable | Derived SI Unit |
|---|---|
| [katex]F[/katex] (Force) | [katex]\text{newtons (N)}[/katex] |
| [katex]E[/katex], [katex]PE[/katex], [katex]KE[/katex] (Energy, Potential Energy, Kinetic Energy) | [katex]\text{joules (J)}[/katex] |
| [katex]P[/katex] (Power) | [katex]\text{watts (W)}[/katex] |
| [katex]p[/katex] (Momentum) | [katex]\text{kilogram meters per second (kgm/s)}[/katex] |
| [katex]\omega[/katex] (Angular Velocity) | [katex]\text{radians per second (rad/s)}[/katex] |
| [katex]\tau[/katex] (Torque) | [katex]\text{newton meters (Nm)}[/katex] |
| [katex]I[/katex] (Moment of Inertia) | [katex]\text{kilogram meter squared (kgm}^2\text{)}[/katex] |
| [katex]f[/katex] (Frequency) | [katex]\text{hertz (Hz)}[/katex] |
General Metric Conversion Chart
Example of using unit analysis: Convert 5 kilometers to millimeters.
Start with the given measurement: [katex]\text{5 km}[/katex]
Use the conversion factors for kilometers to meters and meters to millimeters: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}}[/katex]
Perform the multiplication: [katex]\text{5 km} \times \frac{10^3 \, \text{m}}{1 \, \text{km}} \times \frac{10^3 \, \text{mm}}{1 \, \text{m}} = 5 \times 10^3 \times 10^3 \, \text{mm}[/katex]
Simplify to get the final answer: [katex]\boxed{5 \times 10^6 \, \text{mm}}[/katex]
Prefix | Symbol | Power of Ten | Equivalent |
|---|---|---|---|
Pico- | p | [katex]10^{-12}[/katex] | 0.000000000001 |
Nano- | n | [katex]10^{-9}[/katex] | 0.000000001 |
Micro- | µ | [katex]10^{-6}[/katex] | 0.000001 |
Milli- | m | [katex]10^{-3}[/katex] | 0.001 |
Centi- | c | [katex]10^{-2}[/katex] | 0.01 |
Deci- | d | [katex]10^{-1}[/katex] | 0.1 |
(Base unit) | – | [katex]10^{0}[/katex] | 1 |
Deca- or Deka- | da | [katex]10^{1}[/katex] | 10 |
Hecto- | h | [katex]10^{2}[/katex] | 100 |
Kilo- | k | [katex]10^{3}[/katex] | 1,000 |
Mega- | M | [katex]10^{6}[/katex] | 1,000,000 |
Giga- | G | [katex]10^{9}[/katex] | 1,000,000,000 |
Tera- | T | [katex]10^{12}[/katex] | 1,000,000,000,000 |
The most advanced version of Phy. 50% off, for early supporters. Prices increase soon.
per month
Billed Monthly. Cancel Anytime.
Trial –> Phy Pro
We crafted THE Ultimate A.P Physics 1 Program so you can learn faster and score higher.
Try our free calculator to see what you need to get a 5 on the 2026 AP Physics 1 exam.
A quick explanation
Credits are used to grade your FRQs and GQs. Pro users get unlimited credits.
Submitting counts as 1 attempt.
Viewing answers or explanations count as a failed attempts.
Phy gives partial credit if needed
MCQs and GQs are are 1 point each. FRQs will state points for each part.
Phy customizes problem explanations based on what you struggle with. Just hit the explanation button to see.
Understand you mistakes quicker.
Phy automatically provides feedback so you can improve your responses.
10 Free Credits To Get You Started
By continuing you agree to nerd-notes.com Terms of Service, Privacy Policy, and our usage of user data.
Feeling uneasy about your next physics test? We'll boost your grade in 3 lessons or less—guaranteed
NEW! PHY AI accurately solves all questions
🔥 Get up to 30% off Elite Physics Tutoring
🧠 NEW! Learn Physics From Scratch Self Paced Course
🎯 Need exam style practice questions?